Figure S1: Pseudo-code for the degradation graph construction

Pseudo code for the degradation graph construction. The notation was already defined in the text but for completeness and an easier reading we repeat it here.

Given a node v in the degradation graph, $s(v)$ denotes the amino acid sequence of the peptide associated with the node v. The length of the amino acid sequence is given by $|s(v)| . s(v)[a, b]$ with $1 \leq a \leq b \leq|s(v)|$ is the subsequence of the amino acid sequence from position a to position b. $m(v)$ denotes the mass of the peptide associated with the node v. If we could identify a signal that corresponds to the peptide associated with v, we will denote it's intensity with $I_{m(v)}\left(t_{i}\right)$. The association between mass and intensity takes into account, that mass spectrometers measure only mass to charge ratios and therefore cannot distinguish peptides with equal mass. Therefore different peptides with equal mass can be associated to the same intensity value, without counting the signal twice in the later analysis. The set of all peptide masses in the graph is denoted by M. We further introduce a queue of nodes L, which is empty at the beginning of the construction.

```
function Verification(Degradation Graph g, Spectrum P, Time \(t\) )
    \(L \leftarrow\}\)
    for each node \(v\) in \(g\) do
        if \(P\) contains a signal \(p\) for peptide \(s(v)\) then
                \(L \leftarrow\{L, v\}\)
                \(I_{m(v)}(t) \leftarrow\) intensity of \(p\)
            end if
    end for
    return \(L\)
end function
```

```
function Extension(Degradation Graph g, Spectrum P, Time t, Node List L)
    for each node \(u\) in \(L\) do
        if \(P\) contains a signal \(p\) for peptide \(s(u)[2,|s(u)|]\) then
            create node \(v\), with \(s(v) \leftarrow s(u)[2,|s(u)|]\) and \(I_{m(v)}(t) \leftarrow\) intensity of \(p\)
            add edge \(u \rightarrow v\)
            \(L \leftarrow\{L, v\}\)
        end if
        if \(P\) contains a signal \(p\) for peptide \(s(u)[1,|s(u)|-1]\) then
            create node \(v\), with \(s(v) \leftarrow s(u)[1,|s(u)|-1]\) and \(I_{m(v)}(t) \leftarrow\) intensity of \(p\)
            add edge \(u \rightarrow v\)
            \(L \leftarrow\{L, v\}\)
        end if
        for each \(c, 2<c<|s(v)|-1\) do
            if \(P\) contains signals \(p_{v}, p_{w}\) for peptides \(s(u)[1, c]\) and \(s(u)[c+1,|s(u)|-1]\) then
                create nodes \(u_{c}\)
                add edge \(u \rightarrow u_{c}\)
                create node \(v\), with \(s(v) \leftarrow s(u)[1, c]\) and \(I_{m(v)}(t) \leftarrow\) intensity of \(p_{v}\)
                create node \(w\), with \(s(w) \leftarrow s(u)[c+1,|s(u)|]\) and \(I_{m(w)}(t) \leftarrow\) intensity of \(p_{w}\)
                add edge \(u_{c} \rightarrow v\)
                add edge \(u_{c} \rightarrow w\)
                \(L \leftarrow\{L, v, w\}\)
            end if
        end for
    end for
end function
```

