
Using rule-based machine learning for candidate disease gene
prioritization and sample classification of cancer gene expression

data - Supplementary Material

Enrico Glaab, Jaume Bacardit, Jonathan M. Garibaldi, Natalio Krasnogor

Contents

1 Datasets and normalization 2

2 Cross-validation results for different dataset pre-processing variants 3

3 Robustness of feature selection methods 10

1



1 Datasets and normalization

Diffuse large B-cell lymphoma (DLBCL)

The lymphoma dataset [1] contains expression values for 7,129 genetic probes and 77 microarray samples, 58
of which were obtained from patients suffering from diffuse large B-cell lymphoma (D), while the remaining
samples are derived from a related B-cell lymphoma type, termed follicular lymphoma (F). The experiments
in this microarray study have been carried out on an Affymetrix HU6800 oligonucleotide platform.
To pre-process the raw data, the Variance stabilizing normalization method [2] was applied to filter out
intensity-dependent variance. This was done using the vsn library and the expresso package in the R sta-
tistical learning environment [3]. Moreover, a thresholding was applied based on the suggestions in the
supplementary material of the original publication associated with the dataset [1], and a fold-change filter
used to remove features with low variance (all genetic probe vectors with less than a 3-fold change between
the maximum and minimum expression value were discarded), resulting in 2647 remaining genetic probes
(the pre-processed data is available online: http://icos.cs.nott.ac.uk/datasets/microarray.html).

Prostate cancer

The prostate cancer dataset [4] consists of expression measurements for 12,600 genetic probes across 50 nor-
mal tissues and 52 prostate cancer tissues. All experiments have been carried out on Affymetrix Hum95Av2
arrays. Due to the large number of samples, the fast GeneChip RMA (GCRMA) normalization algorithm
was applied [5], a method that combines stochastic and sequence-based physical models to estimate the
mRNA abundances. Moreover, thresholding was employed based on the suggestions of the original publi-
cation associated with the dataset [4] and a fold change filter to remove all probes with less than a 2-fold
change between the maximum and minimum expression value, providing 2135 remaining genetic probes
(the pre-processed data is available online: http://icos.cs.nott.ac.uk/datasets/microarray.html). Moreover, to
investigate the robustness of the prediction and feature selection results across different filtering settings (see
sections 2 and 3 in the Suppl. Mat.), two additional versions of the prostate cancer data were obtained by ap-
plying a 3-fold change filter (providing 340 remaining genetic probes) and a 1.5-fold change filter (providing
7355 remaining genetic probes).

Breast cancer

The breast cancer dataset from the collaborating Queen’s Medical Centre [6, 7, 8, 9] provides gene expression
values for 128 primary breast tumors across 47,293 genetic probes. Two groups of tumor samples can be
distinguished in the data, the luminal group (L, 84 samples), which is characterised by oestrogen receptor
expression, and the non-luminal group (N, 44 samples, no oestrogen receptor expression). The expression
profiling procedure has previously been described in detail [6, 7, 8], and has also been applied in a recent
ensemble gene selection analysis of this dataset [9]. Since the probe level data was obtained from a Sentrix
Human-6 BeadChip platform (v1.0, Illumina, San Diego, CA), the dedicated Bioconductor “beadarray”
package was used for normalization and probe replicate summarization (the pre-processed data is available
online: http://icos.cs.nott.ac.uk/datasets/microarray.html).
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2 Cross-validation results for different dataset pre-processing variants

To analyze the robustness of BioHEL’s sample classification performance across different settings for the
pre-filtering of datasets and the maximum number of selected attributes, the whole experimental protocol
as outlined in the main manuscript was applied again on six different pre-processed versions of the largest
dataset (obtained from the prostate cancer study by Singh et al. [4]. For this purpose, first, two additional
pre-filtered versions of the prostate cancer data were generated by removing all genetic probe vectors with
less than a 3-fold change (resulting in 340 remaining genetic probes), and respectively a 1.5-fold change
(resulting in 7355 remaining genetic probes), between the maximum and minimum expression value (see
classification results for these datasets in Table 1 and 2). Moreover, the original pre-processed version of
the prostate cancer dataset with a 2-fold filtering was used in combination with four different maximum
numbers of selected features (5, 15, 50 and 100; see Tables 3, 4, 5 and 6). For all these input settings,
the predictive performance was evaluated for each combination between the prediction methods (BioHEL,
GAssist, RF, SVM, PAM) and the feature selection methods (CFS, RFS, PLSS) using both external 10-fold
cross-validation (CV) and Leave-one-out CV (LOOCV), as described in the main manuscript.
Overall, BioHEL attained average cross-validated classification accuracies between 84% and 95% for all of
the above settings, with robust results across all data pre-processing methods and similar performances in
relation to the other benchmark approaches as compared to the default settings used in the main manuscript.
The best average accuracies obtained with BioHEL for each combination of a dataset pre-processing with a
cross-validation procedure (highlighted in bold face in the tables) were always above 90% and similar to the
average accuracies obtained with the best alternative benchmark approach (in six cases, the same maximum
performance was reached, in one case BioHEL was the only method reaching the highest average accuracy,
and in the remaining cases BioHEL’s highest average accuracy was within 3% of the best overall accuracy).
In summary, these results confirm that BioHEL’s performance is robust and competitive in comparison to
other widely used microarray classification approaches across different pre-filtering settings with and without
feature selection.
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Table 1: 10-fold cross-validation results for different pre-processed variants of the Prostate cancer dataset

Dataset Feature Selection Classification AVG (%) STDDEV

CFS BioHEL 84 8
CFS GAssist 85 11
CFS SVM 90 9
CFS RF 89 12
CFS PAM 90 10

PLSS BioHEL 87 10
PLSS GAssist 90 11

3-fold pre-processing PLSS SVM 85 19
(30 features) PLSS RF 88 13

PLSS PAM 84 12

RFS BioHEL 91 7
RFS GAssist 89 9
RFS SVM 89 12
RFS RF 94 8
RFS PAM 88 13

none BioHEL 90 8

CFS BioHEL 90 8
CFS GAssist 88 11
CFS SVM 93 8
CFS RF 91 11
CFS PAM 93 9

PLSS BioHEL 90 9
PLSS GAssist 90 12

1.5-fold pre-processing PLSS SVM 88 8
(30 features) PLSS RF 94 8

PLSS PAM 93 10

RFS BioHEL 86 10
RFS GAssist 90 12
RFS SVM 90 8
RFS RF 95 8
RFS PAM 91 10

none BioHEL 95 8

10-fold cross-validation results obtained with BioHEL, SVM, RF and PAM and three feature selection methods (CFS,
PLSS, RFS) on the prostate cancer dataset using two pre-processing variants (2-fold and 1.5-fold filtering); AVG =
average accuracy, STDDEV = standard deviation; the highest accuracies achieved with BioHEL and the best alternative
method are both shown in bold type for each dataset.

4



Table 2: Leave-one-out cross-validation results for different pre-processing variants of the Prostate cancer dataset

Dataset Feature Selection Classification AVG (%) STDDEV

CFS BioHEL 87 33
CFS GAssist 87 33
CFS SVM 90 30
CFS RF 88 32
CFS PAM 87 34

PLSS BioHEL 86 34
PLSS GAssist 90 30

3-fold pre-processing PLSS SVM 82 32
(30 features) PLSS RF 92 27

PLSS PAM 84 37

RFS BioHEL 91 28
RFS GAssist 92 27
RFS SVM 86 35
RFS RF 93 25
RFS PAM 83 37

none BioHEL 90 30

CFS BioHEL 91 28
CFS GAssist 86 34
CFS SVM 95 22
CFS RF 93 25
CFS PAM 94 24

PLSS BioHEL 90 30
PLSS GAssist 90 30

1.5-fold pre-processing PLSS SVM 82 32
(30 features) PLSS RF 94 24

PLSS PAM 93 25

RFS BioHEL 90 30
RFS GAssist 89 31
RFS SVM 90 30
RFS RF 95 22
RFS PAM 89 31

none BioHEL 95 22

Leave-one-out cross-validation results obtained with BioHEL, SVM, RF and PAM and three feature selection methods
(CFS, PLSS, RFS) on the prostate cancer dataset using two pre-processing variants (2-fold and 1.5-fold filtering);
AVG = average accuracy, STDDEV = standard deviation; the highest accuracies achieved with BioHEL and the best
alternative method are both shown in bold type for each dataset.
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Table 3: 10-fold cross-validation results for different maximum numbers of selected features on the Prostate cancer dataset
(1)

Dataset Feature Selection Classification AVG (%) STDDEV

CFS BioHEL 93 6
CFS GAssist 90 10
CFS SVM 94 10
CFS RF 94 11
CFS PAM 93 8

PLSS BioHEL 89 11
2-fold PLSS GAssist 89 12
pre-processing PLSS SVM 92 8
- 5 features PLSS RF 90 9

PLSS PAM 91 10

RFS BioHEL 88 6
RFS GAssist 85 12
RFS SVM 89 11
RFS RF 88 10
RFS PAM 87 9

CFS BioHEL 93 8
CFS GAssist 91 8
CFS SVM 93 9
CFS RF 92 11
CFS PAM 94 8

PLSS BioHEL 91 7
2-fold PLSS GAssist 93 9
pre-processing PLSS SVM 88 10
- 15 features PLSS RF 90 10

PLSS PAM 90 11

RFS BioHEL 91 8
RFS GAssist 90 11
RFS SVM 90 11
RFS RF 93 9
RFS PAM 91 10

10-fold cross-validation results obtained with BioHEL, SVM, RF and PAM and three feature selection methods (CFS,
PLSS, RFS) on the prostate cancer dataset using alternative settings for the maximum number of selected features (5
and 15, see next page for 50 and 100 maximum features); AVG = average accuracy, STDDEV = standard deviation; the
highest accuracies achieved with BioHEL and the best alternative method are both shown in bold type for each dataset.
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Table 4: 10-fold cross-validation results for different maximum numbers of selected features on the Prostate cancer dataset
(2)

Dataset Feature Selection Classification AVG (%) STDDEV

CFS BioHEL 93 8
CFS GAssist 92 8
CFS SVM 93 9
CFS RF 92 11
CFS PAM 94 8

PLSS BioHEL 93 8
2-fold PLSS GAssist 93 8
pre-processing PLSS SVM 89 9
- 50 features PLSS RF 93 9

PLSS PAM 89 11

RFS BioHEL 91 8
RFS GAssist 92 11
RFS SVM 91 11
RFS RF 93 9
RFS PAM 91 10

CFS BioHEL 93 8
CFS GAssist 91 8
CFS SVM 93 9
CFS RF 92 11
CFS PAM 94 8

PLSS BioHEL 94 7
2-fold PLSS GAssist 91 12
pre-processing PLSS SVM 90 9
100 features PLSS RF 92 9

PLSS PAM 89 11

RFS BioHEL 91 7
RFS GAssist 91 12
RFS SVM 87 13
RFS RF 93 9
RFS PAM 91 10

10-fold cross-validation results obtained with BioHEL, SVM, RF and PAM and three feature selection methods (CFS,
PLSS, RFS) on the prostate cancer dataset using alternative settings for the maximum number of selected features (50
and 100, see previous page for 5 and 15 maximum features); AVG = average accuracy, STDDEV = standard deviation;
the highest accuracies achieved with BioHEL and the best alternative method are both shown in bold type for each
dataset.
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Table 5: Leave-one-out cross-validation results for different maximum numbers of selected features on the Prostate cancer
dataset (1)

Dataset Feature Selection Classification AVG (%) STDDEV

CFS BioHEL 90 30
CFS GAssist 88 32
CFS SVM 94 24
CFS RF 92 27
CFS PAM 92 27

PLSS BioHEL 89 31
2-fold PLSS GAssist 90 30
pre-processing PLSS SVM 92 27
- 5 features PLSS RF 90 30

PLSS PAM 90 30

RFS BioHEL 94 24
RFS GAssist 89 31
RFS SVM 92 27
RFS RF 88 32
RFS PAM 92 27

CFS BioHEL 91 28
CFS GAssist 91 28
CFS SVM 93 25
CFS RF 93 25
CFS PAM 92 27

PLSS BioHEL 94 24
2-fold PLSS GAssist 91 28
pre-processing PLSS SVM 91 29
- 15 features PLSS RF 91 29

PLSS PAM 91 29

RFS BioHEL 89 31
RFS GAssist 89 31
RFS SVM 90 30
RFS RF 93 25
RFS PAM 92 27

Leave-one-out cross-validation results obtained with BioHEL, SVM, RF and PAM and three feature selection methods
(CFS, PLSS, RFS) on the prostate cancer dataset using alternative settings for the maximum number of selected features
(5 and 15, see next page for 50 and 100 maximum features); AVG = average accuracy, STDDEV = standard deviation;
the highest accuracies achieved with BioHEL and the best alternative method are both shown in bold type for each
dataset.
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Table 6: Leave-one-out cross-validation results for different maximum numbers of selected features on the Prostate cancer
dataset (2)

Dataset Feature Selection Classification AVG (%) STDDEV

CFS BioHEL 89 31
CFS GAssist 89 31
CFS SVM 93 25
CFS RF 93 25
CFS PAM 92 27

PLSS BioHEL 93 25
2-fold PLSS GAssist 93 25
pre-processing PLSS SVM 91 29
- 50 features PLSS RF 92 27

PLSS PAM 91 29

RFS BioHEL 89 31
RFS GAssist 93 25
RFS SVM 93 25
RFS RF 92 27
RFS PAM 90 30

CFS BioHEL 91 28
CFS GAssist 89 31
CFS SVM 93 25
CFS RF 93 25
CFS PAM 92 27

PLSS BioHEL 93 25
2-fold PLSS GAssist 93 25
pre-processing PLSS SVM 90 30
- 100 features PLSS RF 92 27

PLSS PAM 91 29

RFS BioHEL 93 25
RFS GAssist 92 27
RFS SVM 91 29
RFS RF 93 25
RFS PAM 91 29

Leave-one-out cross-validation results obtained with BioHEL, SVM, RF and PAM and three feature selection methods
(CFS, PLSS, RFS) on the prostate cancer dataset using alternative settings for the maximum number of selected features
(50 and 100, see previous page for 5 and 15 maximum features); AVG = average accuracy, STDDEV = standard
deviation; the highest accuracies achieved with BioHEL and the best alternative method are both shown in bold type
for each dataset.
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3 Robustness of feature selection methods

In addition to the comparison of the classification results across different feature selection, prediction, cross-
validation (CV) and pre-processing methods, we also investigated the stability of the feature selection results
across different CV-cycles, using BioHEL both with and without external attribute selection on the smallest
and largest pre-filtered version of the prostate cancer data by Singh et al. [4]). For this purpose, for each
10-fold CV-cycle the 10 top-ranked selected genetic probes were determined, and the number of times they
were chosen across at least 8 of 10 CV-cycles was recorded (these numbers are reported as robustness scores
in Tables 7 and 8). The highest scores (5 and 6) were obtained when using BioHEL without external feature
selection method. However, in combination with some of the external selection methods (e.g. PLSS) the
same or similar robustness scores were reached. RFS tended to provide slightly lower scores than the other
approaches, including a score of 0 in one case (for the 1.5-fold filtering of the prostate cancer dataset,
providing the largest number of 7355 remaining genetic probes), which might result from the stochastic
nature of the random forests approach.
When comparing the attribute identifiers for the 10 top-ranked features obtained from BioHEL using no
external selection with those obtained directly from PLSS, RFS and CFS (prior to the classification), sev-
eral features that were shared across different CV-cycles for a single selection method were also shared
across these different algorithms (see Tables 9, 10 and 11 for the results on the 1.5-fold, 2-fold and 3-fold
pre-filtered version of the prostate cancer dataset; attributes which appear at least twice across these tables
are highlighted by matching colors). On all pre-processed versions of the prostate cancer dataset BioHEL
shares at least its first 4 top-ranked features with at least one of the external feature selection methods. Given
that only the 10 highest-ranked features are considered for each method in this comparison and the initial
dataset contained between 7355 and 340 attributes (for 1.5-fold and 3-fold filtering, respectively), these
results reveal a significant concordance between the top-ranked features for different methods. Moreover,
since most of these high-ranked attributes across different methods were also selected by the univariate PLSS
approach, the corresponding features are univariately significant, with four notable exceptions: The genetic
probes 37068 at (phospholipase A2, group VII), 38291 at (proenkephalin), 914 g at (transcriptional regu-
lator ERG) and 38634 at (cellular retinol binding protein 1) appear among the top 10 attributes for multiple
multivariate selection methods but never among the top-ranked features for PLSS. This might indicate that
these attributes are selected by the multivariate approaches due to their significance in the presence of other
features (since the outcome variable is binary, a meaningful comparison of the correlation between these
features and the outcome was not possible).
A more specific analysis of the individual shared and non-shared genetic probes across the different selection
methods was not within the scope of this study; however, in the main manuscript a detailed discussion of
the top-ranked attributes selected by the more robust ensemble feature selection method (Ensemble FS) and
BioHEL-based feature ranking (BioHEL FR) is provided in the literature mining section.
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Table 7: Feature selection robustness scores on the prostate cancer dataset (1)

3-fold pre-processing 1.5-fold pre-processing

CFS 4 5
PLSS 5 6
RFS 5 0
noFS 6 5

Feature selection robustness scores across 10 cross-validation cycles on the prostate cancer dataset, corresponding
to the number of features among the 10 top-ranked attributes that were selected across at least 8 out of 10 cycles.
The results are shown both for the smallest and largest version of the prostate cancer dataset (3-fold and 1.5-fold
pre-filtering) using the same settings as for the corresponding classification results reported in Table 1 (for the other
pre-processing variants of this dataset, see Table 8).

Table 8: Feature selection robustness scores on the prostate cancer dataset (2)

5 features 15 features 50 features 100 features

CFS 5 5 5 5
PLSS 4 4 6 4
RFS 3 3 3 2

Feature selection robustness scores across 10 cross-validation cycles on the prostate cancer dataset, corresponding to
the number of features among the 10 top-ranked attributes that were selected across at least 8 out of 10 cycles. The
results are shown for the 2-fold pre-processing of the prostate cancer dataset using different maximum numbers of
selected features in the external attribute selection (5, 15, 50 and 100 - see also Tables 3 and 4 for the corresponding
classification results).

Table 9: Comparison of the 10 top-ranked features for different feature selection methods and BioHEL without external
selection on the prostate cancer dataset (1.5-fold pre-processing)

BioHEL PLSS RFS CFS

32598 at 37639 at 37639 at 37639 at
37068 at 41468 at 41706 at 32598 at
37639 at 41706 at 32598 at 2041 i at
41706 at 1740 g at 37068 at 31791 at
914 g at 38827 at 36174 at 38087 s at
103 at 37366 at 34730 g at 33121 g at
38028 at 40282 s at 39315 at 36928 at
38803 at 32598 at 40024 at 37366 at
38951 at 38087 s at 35776 at 33883 at
39939 at 38634 at 41732 at 38326 at

Comparison of the 10 top-ranked genetic probes for the external selection methods (without machine learning) and for
BioHEL (without external attribute selection) for a 1.5-fold pre-filtering of the prostate cancer dataset and 10-fold CV.
Features occurring at least twice across this table and table 10 and 11 are colored, and shared features receive the same
colors across all tables.
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Table 10: Comparison of the 10 top-ranked features for different feature selection methods and BioHEL without external
selection on the prostate cancer dataset (2-fold pre-processing)

BioHEL PLSS RFS CFS

32598 at 37639 at 41706 at 37639 at
37639 at 41468 at 37639 at 32598 at
40282 s at 41706 at 38028 at 38087 s at
41706 at 40282 s at 32598 at 31791 at
32250 at 1661 i at 38291 at 39756 g at
38028 at 1740 g at 37720 at 31906 at
914 g at 34775 at 914 g at 33825 at
37068 at 1662 r at 38057 at 37599 at
41741 at 37366 at 575 s at 914 g at
36627 at 32598 at 41468 at 35178 at

Comparison of the 10 top-ranked genetic probes for the external selection methods (without machine learning) and for
BioHEL (without external attribute selection) for a 2-fold pre-filtering of the prostate cancer dataset and 10-fold CV.
Features occurring at least twice across this table and tables 9 and 11 are colored, and shared features receive the same
colors across all tables.

Table 11: Comparison of the 10 top-ranked features for different feature selection methods and BioHEL without external
selection on the prostate cancer dataset (3-fold pre-processing)

BioHEL PLSS RFS CFS

37068 at 41706 at 41706 at 41706 at
38291 at 1740 g at 38291 at 40282 s at
38634 at 38827 at 38634 at 38827 at
40282 s at 40282 s at 37068 at 38634 at
41483 s at 34775 at 40282 s at 37068 at
41706 at 1661 i at 38827 at 38291 at
36627 at 291 s at 40071 at 36491 at
38127 at 38469 at 34050 at 1740 g at
AFFX-M27830 5 at 36491 at 33415 at 40071 at
1612 s at 38604 at 34775 at 39154 at

Comparison of the 10 top-ranked genetic probes for the external selection methods (without machine learning) and for
BioHEL (without external attribute selection) for a 3-fold pre-filtering of the prostate cancer dataset and 10-fold CV.
Features occurring at least twice across this table and table 9 and 10 are colored, and shared features receive the same
colors across all tables.
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