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Material and Methods 

1. Dataset 

Both of the positive and negative training data were constructed from the previous 

computational approaches (1-3). With the fibril-forming segments these works 

provided, the original sequences of the whole proteins were obtained by searching the 

peptide sequences in the SwissProt database, only the perfect matches with the same 

sequence information, protein names and the organisms were selected. Finally, 46 

protein sequences with 17102 amino acids were obtained, in which there are 1370 

fibril-forming sites according to the laboratory work. A scanning window of 27 amino 

acids wide was used to generate the training peptides. These peptides with 27 amino 

acids had its category due to the location of the 14th amino acid. If the 14th amino 

acid located in the fibril-forming region, the peptide was sorted as the positive data, 

while the peptide with the non-fibril-forming 14th amino acid was classified as the 

negative data. As the negative data is 11 times larger than the positive one, and the 

unbalanced dataset between the negative sample and positive sample may cause bias 

during the training process, a random selection were carried out to construct a 

balanced dataset which contains 1370 positive data and 1370 negative data. 

 

2 Feature Construction 

2.1 The features of AAIndex transformed scores 

AAIndex (http://www.genome.ad.jp/aaindex/) is a database of numerical indices 

representing various physicochemical and biochemical properties of amino acids and 

pairs of amino acids. It is composed of three sections: AAIndex1, AAIndex2 and 

AAIndex3. AAindex1 is the database for 544 different physicochemical and 

biological properties of amino acids. While these properties in AAindex1 were 

http://www.genome.ad.jp/aaindex/�
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summarized into 5 multidimensional patterns of attribute covariation by Atchley et al 

in 2005 (4). The 5 transformed scores used to encode the amino acids in our study 

shows the properties of polarity, secondary structure, molecular volume, codon 

diversity, and electrostatic charge individually. 

 

2.2 The features of disorder score 

Disordered regions are parts of the proteins which don’t have fixed 

three-dimensional structures under physiological conditions. They involve 

high-specificity low affinity interactions and multiple binding of proteins, and is very 

important in regulation, signaling and control (5). 

VSL2 (6) was used to calculate the disorder score which quantifies the disorder 

status of each amino acid in the protein sequence. The VSL2 predictors can accurately 

predict and identify the short disordered regions. The disorder scores of all the 9 

amino acids in the training peptides were included in the features that encoded the 

peptide. 

2.3 The features of PSSM conservation score 

Conservation is one of the most important concepts in biology. It’s known that 

there are many conservative sequences among different species, while these 

sequences haven’t changed a lot during the evolution, and often locate in the 

important functional domains. This means that these amino acid sites are of great 

importance, and the mutation at these sites is able to result in the change of the 

structure or function of the protein. 

Position Specific Iterative BLAST (PSI BLAST) can measure the residue 

conservation in a given location. It uses a 20-dimensional vector to represent 

probabilities of conservation against mutations to 20 different amino acids. Position 

Specific Scoring Matrix (PSSM)(7) is a matrix of such vectors which represent all 
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residues in a given sequence. If a residue is conserved in PSI BLAST, it is likely to be 

important for biological function. 

In this study, we used the PSSM conservation score to quantify the conservation 

status of each amino acid in the protein sequence. Target sequences are scanned 

against the reference data sets UniRef100 (Release: 15.9, 13-Oct-2009) to generate 

the position specific scoring matrices (PSSMs) using Position Specific Iterative 

BLAST (PSI BLAST) program (Release 2.2.12)(8). 

2.4 The features of secondary structure and solvent accessibility 

The basic functions of proteins are mainly controlled by their structure. Here, the 

structure features including secondary and solvent accessibility were also included to 

encode the peptides. These features were predicted by the secondary structure and 

solvent accessibility predictors SSpro 4 (9). The secondary structural property of each 

amino acid was predicted as ‘helix’, ‘strand’, or ‘other’. And the solvent accessibility 

of each amino acid was predicted as ‘buried’ or ‘exposed’.  

2.5 The Other features 

Goldsmidt et al suggested that protein folds have evolved to remove segments of high 

propensity and proper conformation for fibrillation from protein surfaces(10). 

Consistently, we included features of amino acid evolution (11), the conservation of 

an amino acid on protein exposed surface (12). Besides, we also included the side 

chain count of carbon atom deviation from mean for each amino acid residue in the 

peptide for the atoms composition of side chain influence the structures and functions 

of the proteins. The score for each residue can be calculated by subtracting the mean 

of the carbon atom number of residue side chains within the 27-residue peptide by the 

side chain carbon number of each residue.  

 

2. Nearest Neighbor Algorithm 
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In this study, Nearest Neighbor (NN) algorithm (13-16) was used to construct 

classifiers to classify each sample to a fibril-forming one or a non-fibril-forming one. 

NN is a machine learning approach which has been widely applied in biological 

researches (13-16). It makes its decision based on similarities between the test 

sample’s feature vector and the feature vectors of all samples in training dataset. The 

same class of the sample in the training set which has the highest similarity, i.e. the 

nearest neighbor, would be designated to the test sample. In this study, the similarity 

between two vectors pi and pj is defined as: 

( , )
|| || || ||

i j
i j

i j
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D p p

p p
⋅
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where pi·pj is the inner product of pi and pj, and ||p|| represents the module of vector p. 

3. Random forest algorithm 

Besides the NN algorithm, random forest (RF) algorithm (17) was also used to 

construct classifier for it has been successfully applied in the diverse biological 

prediction problems (18-20). RF classifier consists of many decision trees and makes 

decisions by choosing the class with the most votes of the decision trees in the forest. 

Each tree can be grown like this: (1) Suppose the number of training samples is N, 

and the number of variables in the classifier is M. (2) Then a training set is generated 

for the tree by choosing n times with replacement from all the N training samples 

(Bootstrap aggregating), and the rest samples are used for test. (3) For each node of 

the tree, m (much less than M) variables are chose randomly from the M variables to 

make decisions. Based on the selected m variables, the most optimized split is 

employed to split the node. (4) Each tree should be fully grown with no pruning. By 

combining multiple trees produced in randomly selected subspaces, the prediction 

accuracy is shown to be significantly improved. The detailed implement of the 

algorithm can be found in the researches (17).  
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a. Jackknife Cross-Validation Method 

Jackknife Cross-Validation Method(13, 21) is thought as one of the most effective and 

objective ways to evaluate statistical predictions. In Jackknife Cross-Validation 

Method, each sample in the data set is knocked out and tested by the predictor trained 

by the other samples in the data set. During this process, each sample not only 

involves in the test set, but also the training set. To evaluate the performance of a 

predictor, the accurate rate for positive samples, negative samples and the overall 

accurate rate will be used: 
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b. Feature Selection 

i. mRMR method for feature evaluation 

Maximum Relevance, Minimum Redundancy method(22) is originally developed by 

Peng et al. It ranks each feature according to both its relevance to the target (highly 

related to the prediction accuracy) and the redundancy between the features. A “good” 

feature is characterized by maximum relevance with the target variable and minimum 

redundancy within the features. Mutual information (MI), which estimates how much 

one vector is related to another, is used to quantify the relevance and redundancy of 

each feature. MI is defined as follows: 

( , )( , ) ( , ) log
( ) ( )
p x yI x y p x y dxdy

p x p y
= ∫∫     (1) 

where x  and y  are two vectors; ( , )p x y  is the joint probabilistic density; 
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( )p x and ( )p y  are the marginal probabilistic densities. 

The mRMR function, that maximizes relevance and minimize redundancy, is defined 

as: 

,
1max ( , ) ( ) ( 1, 2,..., )

j t
i s

j j if f
I f c I f f j n

m∈Ω
∈Ω

 
− = 

 
∑    (2) 

Where sΩ  is the already-selected vector set with m  vectors, tΩ  is the 

to-be-selected vector set with n  vectors. ( , )D I f c=  is the relevance of a feature 

f  in tΩ  with a classification variable c , while 1 ( , )
i s

i
f

R I f f
m ∈Ω

= ∑  is the 

redundancy of a feature f  in tΩ  with all the features in sΩ  

For a feature pool containing N (N = m + n) features, feature evaluation will continue 

N rounds. After the pre-evaluation procedure, mRMR method will provide us a 

feature set S: 

' ' ' '
0 1 1, ,..., ,...,h NS f f f f − =         (3) 

In the feature set S, the feature index h denotes which round the feature is selected at. 

Evaluations for feature are also reflected by these indices. For example, fa is believed 

better than fb, if a < b, because the better the feature satisfies Eq (2), the earlier it will 

be added to S. 

ii. Incremental Feature Selection (IFS) 

With the mRMR result, we know the order of the features from the best feature to the 

worst feature. In order to get the optimal feature set which contains the optimal 

number of the features, Incremental Feature Selection (IFS) was used. 

In mRMR step, we can construct the N feature sets from ordered feature set S, where 

the i-th feature set is: 

0 1{ , ,..., } (0 1)i iS f f f i N=  ≤ ≤ −     (4) 
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For every i between 0 and N-1, we use NN or RF to construct the predictor with the 

feature set Si. Jackknife Cross-Validation Method is then used to obtain the accurate 

rates. As a result, we can get an IFS curve with index i as its x-axis and the overall 

accurate rate as its y-axis. 
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