Appendix S1. Period Life Table Calculations

Death rates were calculated as: $m_{x}=D_{x} / P_{x}$, where m_{x} represents the death rate at age x in 1995; D_{x} is the number of deaths at age x in 1995; $P_{x}(=[0.5 *(P(x, 1994)+P(x, 1995))]$ is the average size of the population at age x in 1995; $P(x, 1994)$ is the population at age x at the end of 1994 or at the beginning of 1995; and $P(x, 1995)$ is the population at age x at the end of 1995 .

The standard error (SE) for the death rate m_{x} was calculated using the formula: $:^{2(p 79)}$
$\mathrm{SE}\left(m_{x}\right)=\sqrt{\frac{1}{P_{x}}\left(m_{x}\left(1-q_{x}\right)\right.}$ and the 95% confidence interval (CI) for the death rate at age x is $m_{x} \pm 1.96 \mathrm{SE}\left(m_{x}\right)$, where q_{x} is the probability of death at age x in 1995.

Five-year survival probabilities by age, nativity, sex, and race were calculated as: ${ }_{5} p_{x}=1-{ }_{5} q_{x}$, where ${ }_{5} p_{x}$ represents the five-year survival probability from age x to age $(x+5)$, and ${ }_{5} q_{x}$ is the probability of death from age x to age $(x+5)$.

The SE of the five-year survival probability was estimated using the formula: ${ }^{2(p 154)}$
$\mathrm{SE}\left({ }_{5} p_{x}\right)=\sqrt{\frac{{ }_{5} q_{x}^{2}\left(1-{ }_{5} q_{x}\right)}{{ }_{5} D_{x}}}$ and the $95 \% \mathrm{CI}$ is ${ }_{5} p_{x} \pm 1.96 \mathrm{SE}\left({ }_{5} p_{x}\right)$, where ${ }_{5} D_{x}$ is the number of deaths in the age interval $[\mathrm{x}, \mathrm{x}+5)$.

To estimate cumulative survival probabilities in the Medicare and National Center for Health Statistics (NCHS) data we used the formula: ${ }_{x} p_{65}=\frac{l_{x}}{l_{65}}$, where l_{x} is the number of survivors reaching age x.

The SE of the cumulative survival probabilities in the Medicare and NCHS data was estimated as: ${ }^{1,2(157)}$ $\operatorname{SE}\left({ }_{x} p_{65}\right)=\sqrt{{ }_{x} p_{65}^{2} \sum_{i=x}^{x-n}{ }_{n} p_{i}^{-2} S_{n}^{2} p_{i}}$, where ${ }_{x} p_{65}$ is the cumulative survival from age 65 to age x, and $S_{n}^{2} p_{i}\left(=\mathrm{SE}^{2}\right.$ $\left.\left({ }_{n} p_{i}\right)\right)$ is the variance of the survival probability from age i to age $(i+n)$, and n is the age interval (for Medicare data we used $n=1$; for NCHS data we used $n=5$ because the number of deaths is not available in single years).

We used $e_{x}=\frac{T_{x}}{l_{x}}=\frac{\sum_{i=x}^{\omega-1}{ }_{5} L_{i}}{l_{x}}(x=65,70,75,80,85)$ to estimate average life expectancy, where l_{x} is the number of persons surviving to age x and ${ }_{5} L_{x}$ is the number of person-years lived in the age interval $[\mathrm{x}, \mathrm{x}+5)$ by l_{x}, T_{x} is the total person-years lived after age x by l_{x}.

We used the formula: ${ }^{2(163)} \operatorname{SE}\left(e_{x}\right)=\sqrt{\sum_{i=x}^{\omega-1}\left[{ }_{i} p_{x}^{2}\left(2.5+e_{i+5}\right)^{2} \frac{{ }_{5} q_{i}^{2}\left(1-{ }_{5} q_{i}\right)}{{ }_{5} D_{i}}\right]}(i, x=65,70,75,80,85)$ to estimate the standard error for life expectancy at age x, where ${ }_{i} p_{x}$ is the survival probability from age x to age i, e_{x} is life expectancy at age x and $\omega-1$ is the highest age group.

To estimate cumulative survival probabilities in the Medicare and National Center for Health Statistics (NCHS) data we used the formula: ${ }^{1,2(157)} \operatorname{SE}\left({ }_{x} p_{65}\right)=\sqrt{{ }_{x} p_{65}^{2} \sum_{i=x}^{x-n}{ }_{n} p_{i}^{-2} S_{n}^{2} p_{i}}$, where ${ }_{x} p_{65}$ is the cumulative survival from age 65 to age x, n is the age interval (for Medicare data we used $n=1$; for NCHS data we used $n=5$ because the number of deaths is not available in single years), and $S_{n}^{2} p_{i}\left(=\operatorname{SE}^{2}\left({ }_{n} p_{x}\right)\right)$ is the variance of the survival probability from age x to age $(x+n)$.

For the contribution to total life expectancy (TLE) for a given subpopulation (e.g., foreign-born whites), we used the difference $\left(\Delta_{\left(e_{x}-e_{x}^{\prime}\right)}=e_{x}-e_{x}^{\prime}\right)$ between the actual life expectancy of the total U.S. population at age $x\left(e_{x}\right)$ and the expected life expectancy of the total U.S. population at age $x\left(e_{x}^{\prime}\right)$ if the given subpopulation experienced the age-specific mortality rates of the actual total U.S. population. In other words, for a given subpopulation, if it has lower mortality rates than the total actual U.S. population, e_{x}^{\prime} will be smaller than e_{x} and the difference $\left(\Delta_{\left(e_{x}-e_{x}^{\prime}\right)}\right)$ will be positive, indicating that the subpopulation makes a positive contribution to the TLE of the U.S. population, and so on.

The 95% CIs of the contributions to TLE were estimated by: $\Delta_{\left(e_{x}-e_{x}^{\prime}\right)} \pm 1.96 \mathrm{SE}\left(\Delta_{\left(e_{x}-e_{x}^{\prime}\right)}\right)$, where $\operatorname{SE}\left(\Delta_{\left(e_{x}-e_{x}^{\prime}\right)}\right)$ is the square root of the summation of the two variances of life expectancies e_{x} and e_{x}^{\prime}, that is, $\sqrt{S E^{2}\left(e_{x}\right)+S E^{2}\left(e_{x}^{\prime}\right)} .^{2(p 164)}$

References

1. National Center for Health Statistics (1998) Vital statistics of the United States, 1995, preprint of vol II, mortality, part A sec 6 life tables. Hyattsville, Maryland.
2. Chiang CL (1984) The Life Table and its Applications, Malabar, FL: Robert E. Krieger Publishers.
