Appendix S1. Period Life Table Calculations

Death rates were calculated as: $m_x = D_x / P_x$, where m_x represents the death rate at age x in 1995; D_x is the number of deaths at age x in 1995; P_x (=[0.5*(P(x, 1994)+P(x, 1995))] is the average size of the population at age x in 1995; P(x, 1994) is the population at age x at the end of 1994 or at the beginning of 1995; and P(x, 1995) is the population at age x at the end of 1995.

The standard error (SE) for the death rate m_x was calculated using the formula:^{2(p79)}

SE $(m_x) = \sqrt{\frac{1}{P_x}(m_x(1-q_x))}$ and the 95% confidence interval (CI) for the death rate at age x is $m_x \pm 1.96$ SE (m_x) ,

where q_x is the probability of death at age x in 1995.

Five-year survival probabilities by age, nativity, sex, and race were calculated as: ${}_5 p_x = 1 - {}_5 q_x$, where ${}_5 p_x$ represents the five-year survival probability from age x to age (x+5), and ${}_5 q_x$ is the probability of death from age x to age (x+5).

The SE of the five-year survival probability was estimated using the formula:^{2(p154)}

 $SE(_{5}p_{x}) = \sqrt{\frac{5}{5} \frac{q_{x}^{2}(1-_{5}q_{x})}{5}} \text{ and the 95\% CI is } p_{x} \pm 1.96SE(_{5}p_{x}), \text{ where } D_{x} \text{ is the number of deaths in the}$

age interval [x,x+5).

To estimate cumulative survival probabilities in the Medicare and National Center for Health Statistics (NCHS) data we used the formula: $_{x} p_{65} = \frac{l_{x}}{l_{65}}$, where l_{x} is the number of survivors reaching age x.

The SE of the cumulative survival probabilities in the Medicare and NCHS data was estimated as: ^{1,2(157)} SE($_x p_{65}^2$)= $\sqrt{_x p_{65}^2 \sum_{i=x}^{x-n} _n p_i^{-2} S_{_n p_i}^2}$, where $_x p_{65}$ is the cumulative survival from age 65 to age *x*, and $S_{_n p_i}^2$ (=SE²)

 $(_n p_i)$ is the variance of the survival probability from age *i* to age (*i*+*n*), and *n* is the age interval (for Medicare data we used *n*=1; for NCHS data we used *n*=5 because the number of deaths is not available in single years).

We used
$$e_x = \frac{T_x}{l_x} = \frac{\sum_{i=x}^{\omega-1} {}_5L_i}{l_x}$$
 (x=65, 70, 75, 80, 85) to estimate average life expectancy, where l_x is the

number of persons surviving to age x and ${}_{5}L_{x}$ is the number of person-years lived in the age interval [x,x+5) by l_{x} , T_{x} is the total person-years lived after age x by l_{x} .

We used the formula:²⁽¹⁶³⁾ SE(
$$e_x$$
) = $\sqrt{\sum_{i=x}^{\omega-1} \left[{}_i p_x^2 (2.5 + e_{i+5})^2 \frac{{}_5 q_i^2 (1 - {}_5 q_i)}{{}_5 D_i} \right]}$ (*i*, *x*=65, 70, 75, 80, 85) to

estimate the standard error for life expectancy at age x, where $_i p_x$ is the survival probability from age x to age i, e_x is life expectancy at age x and $\omega - 1$ is the highest age group.

To estimate cumulative survival probabilities in the Medicare and National Center for Health Statistics (NCHS) data we used the formula: ${}^{1,2(157)}$ SE($_x p_{65}$)= $\sqrt{_x p_{65}^2 \sum_{i=x}^{x=n} {_n p_i^{-2} S_{_n p_i}^2}}$, where $_x p_{65}$ is the cumulative survival from age 65 to age *x*, *n* is the age interval (for Medicare data we used *n*=1; for NCHS data we used *n*=5 because the number of deaths is not available in single years), and $S_{_n p_i}^2$ (=SE²($_n p_x$)) is the variance of the survival probability from age *x* to age (*x*+*n*).

For the contribution to total life expectancy (TLE) for a given subpopulation (e.g., foreign-born whites), we used the difference $(\Delta_{(e_x-e'_x)} = e_x - e'_x)$ between the actual life expectancy of the total U.S. population at age $x(e_x)$ and the expected life expectancy of the total U.S. population at age $x(e'_x)$ if the given subpopulation experienced the age-specific mortality rates of the actual total U.S. population. In other words, for a given subpopulation, if it has lower mortality rates than the total actual U.S. population, e'_x will be smaller than e_x and the difference $(\Delta_{(e_x-e'_x)})$ will be positive, indicating that the subpopulation makes a positive contribution to the TLE of the U.S. population, and so on.

The 95% CIs of the contributions to TLE were estimated by: $\Delta_{(e_x - e'_x)} \pm 1.96\text{SE}(\Delta_{(e_x - e'_x)})$, where $\text{SE}(\Delta_{(e_x - e'_x)})$ is the square root of the summation of the two variances of life expectancies e_x and e'_x , that is, $\sqrt{SE^2(e_x) + SE^2(e'_x)}$.^{2(p164)}

References

- 1. National Center for Health Statistics (1998) Vital statistics of the United States, 1995, preprint of vol II, mortality, part A sec 6 life tables. Hyattsville, Maryland.
- 2. Chiang CL (1984) The Life Table and its Applications, Malabar, FL: Robert E. Krieger Publishers.