Supporting Text S1

Genes 

A systematic literature review was conducted of the literature published between 1976 and August 2011, with the help of Medline, EMBASE and PsychINFO using key words (genetic) polymorphism(s), tardive dyskinesia, extrapyramidal (syndrome/disorder), drug-induced, antipsychotic(s), adverse effect/event, schizophrenia. In addition, all relevant references cited in these articles were also retrieved. 
S1.1 Tardive dyskinesia

The dopaminergic and serotonergic systems of neurotransmission have been implicated in the development of movement disorders.

Genes involved in dopaminergic signaling, possibly associated with the development of TD, include those coding for: (i) Dopamine 3 receptor (DRD3), with evidence from meta-analyses for an association between Ser9Gly (rs6280) and TD [1,2], but no or little evidence in a recent meta-analysis [3], confirming the observation of progressive reduction of meta-analytic effects over time in genetic studies [4,5]; (ii) Dopamine 2 receptor (DRD2), with evidence from two meta-analyses for an association between Taq1A (rs1800497) and TD [6,7]. In a recent study with Korean patients, 5 SNPs in DRD2 (-141Ins/Del/Taq1D/NcoI/Ser311Cys/Taq1A) showed no association with TD and TD severity, or the haplotype of these 5 SNPs with TD [8]. Another recent study found evidence for an association between -141Ins/Del (rs1799732) and TD [9]; (iii) Brain-derived neurotrophic factor (BDNF), albeit to date without reported association between Val66Met (rs6265) and TD [10,11]. Furthermore, Xu and colleagues [12] showed that the (GT)n repeat polymorphism of the BDNF gene may be an independent contributor to chlorpromazine-induced TD, akathisia and parkinsonism; and (iv) Catechol-O-methyltransferase (COMT), with evidence from one meta-analysis for an association between Val158Met (rs4680) and TD, where the Val-variant had a risk increasing effect on TD [7]. A study reported that one of six SNPs (rs165599) in the COMT gene may be associated with TD in men, and a sex-stratified meta-analysis showed a significant association between Val158Met (rs4680) and TD, where the ValVal-genotype had a risk increasing effect on TD using the fixed-effect model unadjusted for sex, and in females using the random effect model [13].
Serotonergic genes studied in TD include those coding for: (i) Serotonin 2A receptor (HTR2A), with evidence for an association of TD with T102C (rs6313) detected by Lerer and colleagues [14], also after adjustment for age, by pooled meta-analysis, and with the T102C-His452Tyr haplotype, while other studies failed to find significant effects for rs6313 [15,16]. For Hist452Tyr (rs6314), in HTR2A, no association with TD was detected [14], nor for A-1438G (rs6311) [15,16]. rs6311 was significantly associated with TD in a Turkish population, however only when cumulative antipsychotic intake was considered [17]; (ii) Serotonin 2C receptor (HTR2C), with evidence for an association between -697G/C (rs518147) and TD, but not for -759-T/C (rs3813929) or the haplotype of both [18]. For Cys23Ser (rs6318) an age-related effect with AIMS was found [19]. Another study did not detect differences in allele frequencies of -997A, -759T or -697C between groups of TD, non-TD and controls, whereas the 23Ser allele was significantly higher in patients with movement disorders, with a similar trend using haplotypes of these 4 SNPs [20]. Furthermore, both -697G/C and -759-T/C polymorphisms were associated with the emergence of TD [21].

Findings in a recent study of TD with 128 candidate genes (amongst them dopamine, serotonin) did not support significant results for either novel or prior associations from the literature [22]. Similarly, in a recent study, no association was found between serotonergic genes (amongst others HTR2A, HTR2C) and movement disorders [23]. 

Another study showed that limb truncal, but not orofaciolingual, TD was associated with Ser9Gly (DRD3) and Cys23Ser (HTR2C) in a Russian population, whereas neither subform of TD with associated with A-1438G (HTR2A) [24].
A polymorphism in intron 1 of CYP1A2 (-163C>A; CYP1A2*1F allele; rs762551) appears to affect the inducibility of CYP1A2 by smoking [25,26]. The CYP1A2*1C allele (-3860G>A; rs2069514) also results in a lower activity in smokers [27]. A meta-analysis did not find an association between both SNPs in CYP1A2 and TD [7]. Furthermore, Tiwari and colleagues [28] did not find significant results between TD and different SNPs in CYP1A2, nor did Boke and colleagues [17] for rs762551 in a Turkish population.

Complementary to the ‘dopamine supersensitivity hypothesis’ on TD, the hypothesis of neuronal degeneration owing to toxic effects of free radicals has been proposed, and free radical scavenging enzymes like manganese super oxide dismutase (MnSOD) have been investigated [29]. A meta-analysis showed genetic association with TD in Ala-9Val in MnSOD [7]. However, a more recent study with subsequent meta-analysis did not find significant results between MnSOD Ala-9Val (rs4880) and TD [30] confirming the observation of progressive reduction of meta-analytic effects over time in genetic studies [4,5]. A significant association between Ala-9Val and severity of TD, but not TD as dichotomous outcome, has been reported [31]. Another study by al Hadithy and colleagues [32] found a significant association between Ala-9Val and orofaciolingual TD in a Russian population. A recent study reported no evidence for an association between Ala-9Val and TD in Han Chinese [33].

A relatively new and interesting candidate gene is PPP1R1B, which encodes phosphatase 1, regulatory (inhibitor) subunit 1B (PPP1R1B), also known as dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32), an important regulatory molecule in both the dopaminergic [34] and glutamatergic signaling pathways, which is selectively expressed in neostriatal spiny neurons [35]. Deficit of DARPP-32 in striatonigral neurons decreased basal and cocaine-induced locomotion and stopped L-DOPA induced dyskinetic behaviors. On the other hand, the deficit of DARPP-32 in striatopallidal neurons produced a strong increase in locomotor activity and a strongly reduced cataleptic reaction to haloperidol [36]. To date, only one study examined TD and PPP1R1B, however without result [37].

More details on this topic can be found in the recent extensive review by Lee and Kang [38].

S1.2. Parkinsonism

The pharmacological explanation of drug-induced parkinsonism (DIP) is antagonism of the nigrostriatal dopamine D2 receptor [39,40]. One study in an African-Caribbean population found a significant association between the -141Ins/Del polymorphism in DRD2 and rigidity in males, as well as between the Cys23Ser polymorphism and bradykinesia [41]. 
The regulator of G-protein signaling 2 (RGS2) may play a role in DIP, as it is involved in HTR2A and muscarinic receptor (M1 and M3) signaling, and antagonism of these receptors results in a decrease of DIP [42].

Greenbaum and colleagues [43] reported a significant association between rs4606 in RGS2 and DIP in Jewish participants, which was confirmed by a replication study in an African-American subsample from a mixed population with whites [44]. Another study did not confirm this association in an African-Caribbean population [42], which may be explained by the lower use of atypical antipsychotics in the latter study, most of these agents being HTR2A antagonists and muscarinic receptor (M1 and M3) antagonists [42]. A recent study in a Japanese population found an association between rs4606 and parkinsonism, which disappeared when covariates were considered [45].

S1.3 Akathisia

An association between the Ser9Gly polymorphism in DRD3 and the risk to develop akathisia has been reported [46]. A recent study found evidence for an association between Taq1D (rs1800498) and akathisia [9].
S1.4 Tardive dystonia
Genes coding for CYP2D6, DRD2 and DRD3 did not show an association with tardive dystonia [47].

S1.5 Gene-gene interactions

Combined pharmacokinetic and pharmacogenetic aspects of antipsychotics may help finding subpopulations liable to develop TD [48–50]. Segman and colleagues [51] suggested that the variance of orofacial tardive dyskinesia (OFD) explained by DRD3 and HTR2C may be as high as 20.9 %. Carriership of both risk-alleles explained 4.2% en 4.7%, respectively. Carriers of the risk DRD3-Gly allele and the risk-genotype A2-A2 of CYP17 displayed the highest rate of orofacial, distal and incapacitation scores on the AIMS [52]. DRD3- and CYP1A2-genotypes together accounted for most of the variance of the severest form of TD, the explained variance being > 50% [53]. In one study, in a Chinese Han population, Ser9Gly in DRD3 was not associated with TD, however in combination with Ala-9Val in MnSOD it was [54].

In an African-Caribbean population, evidence for association was reported between the AIMS and (i) Ser9Gly (DRD3) in females, (ii) Ser9Gly with Cys23Ser (HTR2C) or A-1438G (HTR2A) in males, (iii) Cys23Ser (HTR2C) with A-1438G (HTR2A) in males [55].

One study found evidence for association between a haplotype containing rs3732782, rs905568, and rs7620754 in the 5' region of DRD3 on the one hand, and both TD and AIMS on the other, as well as evidence for interaction between BDNF (rs11030104) and DRD3 polymorphisms (rs2087017, rs167770, rs7633291 and rs9825563) and the AIMS, albeit not for BNDF genetic markers in isolation [56].

One study showed a significant association between BDNF Val66Met and AIMS orofacial scores, and a trend of higher AIMS total and limb-trunk scores. However, AIMS scores and the combination of DRD3 ser9gly with BDNF val66met were not associated. Furthermore, TD was not associated with DRD3 or BDNF [57].

One study found a significant combined association between val66met in BDNF and -50T/C in GSK-3beta polymorphisms on the one hand and TD on the other, but not with any of the polymorphisms separately [58].
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