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1 Derivation of the general thermostatistical model: mul-

tiple transcription factors

As mentioned in the main text, DNA states j can conveniently be described by means of chemical
reaction equations of the form

DNAj=1 + mj RNAP +

N∑

n=1

mjn Tn ↔ DNAj (1)

for j = 1, . . . , L, where (m1, . . . , mL) is a vector with mj ∈ {0, 1}, mjn are the stoichiometric
coefficients of a L × N matrix, and Tn are the aforementioned transcription factors n = 1, . . . , N .
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Note that mj = 1 (mj = 0) indicates that in the state j RNA polymerase is (is not) bound to the
promoter.
Let us determine the probability pj to find a cell in a particular DNA state j when selecting
randomly a cell out of a population of cells. To this end, we determine from each reaction the
equilibrium concentration of DNA in state j and the probabilities pj that these states can be
observed.
We first consider the change of the molar free energy ∆G(j) when the reaction described by Eq. (1)
is not in chemical equilibrium [1]

∆G(j) = GDNA j − GDNA j=1 − mj GRNAP −
N∑

n=1

mjn Gn . (2)

Here GDNA j and GRNAP denote the molar free energies of the DNA state j and the RNA
polymerase, respectively, and Gn denote the molar free energies of the transcription factors
n = 1, . . . , N . Let GDNA j,0 and GRNAP,0, and Gn,0 denote the corresponding standard free
energies (for standard unit concentrations). Substituting GX = GX,0 + RT log[X ] [1] (where T is
temperature, R is the Boltzmann gas constant, and [X ] is the concentration of X) into Eq. (2),
we obtain

∆G(j) = ∆G
(j)
0 + RT ln

(

[DNAj ]

[DNAj=1][RNAP]mj
∏N

n=1[Tn]mjn

)

(3)

with

∆G
(j)
0 = GDNA j,0 − GDNA j=1,0 − mj GRNAP,0 −

N∑

n=1

mjn Gn,0 . (4)

In chemical equilibrium, the concentrations of the reactants occurring in Eq. (1) satisfy

[DNAj ] =
[DNAj=1][RNAP ]mj

∏N

n=1[Tn]mjn

K
(j)
D

, (5)

where K
(j)
D is the dissociation constant of the reaction. Likewise, in chemical equilibrium we have

∆G(j) = 0 (which implies ∆G
(j)
0 = RT log K

(j)
D ), and consequently from Eqs. (3,4) we obtain

GDNA j,0−GDNA j=1,0−mj GRNAP,0−
N∑

n=1

mjn Gn,0 = −RT ln

(

[DNAj ]

[DNAj=1][RNAP]mj
∏N

n=1[Tn]mjn

)

.

(6)
Let us discuss the free energy difference GDNA j,0 −GDNA j=1,0. When considering concentrations
of one molar, what are the contributions that affect the DNA free energy when we compare state
j = 1 with state j 6= 1?
First of all, the DNA state j includes the free energies of the bound RNAP and the bound
transcription factors. Let us denote these standard free energies by GRNAP,0,bound and Gn,0,bound

in order to distinguish them from the standard free energies of the corresponding unbounded
ligands GRNAP,0 and Gn,0.
Second, changes of the free energy are due to various impacts of transcription factors. Activators
lower the binding energy of RNAP by a certain amount. We will denote such energy shifts by
ERn ≤ 0. Two transcription factors may affect the RNAP binding energy by mechanisms that
cannot be induced by single transcription factors alone. Energy shifts induced by such mechanisms
will be denoted by ERni ≤ 0. Higher order interactions can be described in terms of ERnik and so
on. In addition, interactions between transcription factors that do not involve RNA polymerase
may affect the free energy. We account for such interactions by introducing energy shift terms
denoted by Eni. Again, higher order interactions may be described in terms of expressions like
Enik. In summary, we put

GDNA j,0 = GDNA j=1,0 + mj GRNAP,0,bound +

N∑

n=1

mjn Gn,0,bound
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+mj





N∑

n=1

mjn ERn +
∑

n,i∈I(j)

ERni



+
∑

n,i∈I(j)

Eni

+higher-order interactions , (7)

where the index-sets I(j) are defined by all transcription factors that are involved in the state j:
I(j) = {k = 1, . . . , N | mjk > 0}. Aiming at a more concise description, we introduce (in analogy

to the aforementioned relationship ∆G
(j)
0 = RT log K

(j)
D ) the dissociation constants KRNAP and

Kn as follows:

GRNAP,0,bound − GRNAP,0 = RT ln KRNAP ,

Gn,0,bound − Gn,0 = RT ln Kn . (8)

Likewise, we define the parameters ΩRn and cooperativity factors ΩRni and Ωni like

−RT ln ΩRn = ERn ,

−RT ln ΩRni = ERni ,

−RT ln Ωni = Eni (9)

with Ω > 0 for all Ω-parameters. If all transcription factors correspond to activators then the
energy shifts listed in Eq. (9) are assumed to be negative which implies that the Ω-parameters
are larger than 1: Ω > 1. Neglecting the higher-order interactions indicated in Eq. (7), we obtain
from Eqs. (6,. . . ,9)

[DNAj ] = [DNA1] q
mj

R

N∏

n=1

qmjn

n





N∏

n=1

Ω
mjn

Rn

∏

n,i∈I(j)

ΩRni





mj

∏

n,i∈I(j)

Ωni , (10)

where we have used the dimensionless, relative concentrations (see main text)

qR =
[RNAP]

KRNAP
, qn =

[Tn]

Kn

. (11)

Note that Eq. (10) describes equilibrium concentrations only, whereas Eq. (3) holds both in chem-
ical equilibrium and non-equilibrium.
Having derived an expression for [DNAj ], we define next the probability of observing a randomly
selected cell in a DNA state j by [2]

pj =
[DNAj ]

Z
(12)

with the partition function Z =
∑L

j=1[DNAj ]. We see that the expression [DNAj=1] can be
dropped out of the equation by defining the fractions as follows,

[DNAj ]
∗ =

[DNAj ]

[DNA1]
= q

mj

R

N∏

n=1

qmjn

n





N∏

n=1

Ω
mjn

Rn

∏

n,i∈I(j)

ΩRni





mj

∏

n,i∈I(j)

Ωni , (13)

which can be used to calculate pj like

pj =
[DNAj ]

∗

Z∗
(14)

with Z∗ =
∑L

j=1[DNAj ]
∗. Note that by substituting the energy shifts and interaction energies (9)

into Eqs. (13,14) the probability pj can equivalently be expressed by

pj =
1

Z∗
q

mj

R

N∏

n=1

qmjn

n exp






−

mj

(
∑N

n=1 mjn ERn +
∑

n,i∈I(j) ERni

)

+
∑

n,i∈I(j) Eni

RT






. (15)

It can be shown that this formulation is consistent with the formulation proposed by Shea and
Ackers (see below).
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2 Multiple transcription factor model in the formulation by

Shea and Ackers

Above (see Eqs. (4), (7), and (15)) we derived the equations

∆G
(j)
0 = GDNA j,0 − GDNA j=1,0 − mj GRNAP,0 −

N∑

n=1

mjn Gn,0 , (16)

GDNA j,0 = GDNA j=1,0 + mj GRNAP,0,bound +

N∑

n=1

mjn Gn,0,bound

+mj





N∑

n=1

mjn ERn +
∑

n,i∈I(j)

ERni



+
∑

n,i∈I(j)

Eni , (17)

and

pj =
1

Z∗
q

mj

R

N∏

n=1

qmjn

n exp






−

mj

(
∑N

n=1 mjn ERn +
∑

n,i∈I(j) ERni

)

+
∑

n,i∈I(j) Eni

RT






. (18)

Substituting Eq. (17) into Eq. (16), we obtain

∆G
(j)
0 = mj [GRNAP,0,bound − GRNAP,0] +

N∑

n=1

mjn[Gn,0,bound − Gn,0]

+mj





N∑

n=1

mjn ERn +
∑

n,i∈I(j)

ERni



+
∑

n,i∈I(j)

Eni . (19)

Substituting this result into Eq. (18) with the help of Eqs. (8,11), we obtain

pj =
1

Z∗
[RNAP]mj

N∏

n=1

[Tn]mjn exp

{

−∆G
(j)
0

RT

}

, (20)

which corresponds to the formulation of multiple transcription factor models proposed by Shea
and Ackers [3, 4, 5].

3 Two activator model and the regulating function

In the main text (see Eq. (15)) we derived the thermostatistical model for two activators:

P =
qR (1 + qA ΩRA + qB ΩRB + qA qB ΩRA ΩRB ΩAB ΩRAB)

qR (1 + qA ΩRA + qB ΩRB + qA qB ΩRA ΩRB ΩAB ΩRAB) + 1 + qA + qB + qA qB ΩAB

. (21)

Eq. (21) can alternatively be expressed by

P =
1

1 + RNAPoff/RNAPon
. (22)

Introducing the function Freg like

qR Freg =
RNAPon

RNAPoff
. (23)

4



we obtain for Freg the expression

Freg =
1 + qA ΩRA + qB ΩRB + qA qB ΩRA ΩRB ΩAB ΩRAB

1 + qA + qB + qA qB ΩAB

. (24)

and the probability P of observing RNA polymerase being bound at the promoter becomes

P =
qR

qR + 1/Freg
. (25)

Importantly, in the absence of any transcription factor we have Freg = 1 and P described the
basal binding probability of RNA polymerase at the promoter. In the presence of transcription
factors Freg becomes different from unity, which affects the binding probability of RNA polymerase.
Therefore, it has been suggested to refer to Freg as regulatory function (whence the subindex ’reg’)
for transcription initiation [6, 7].

4 Monotonical regulation of gene expression by two activa-

tors

In this section, we consider several limiting cases and in particular show that the binding proba-
bility P increases monotonically as function of the activator concentrations [TA] and [TB]. First
of all, the basal binding probability P0 related to the basal transcription rate r0 = βP0 is defined
by (see Eq. 21 or Eq. 25 with Freg = 1)

P0 = P (qA = 0, qB = 0) =
qR

1 + qR

. (26)

Next, let us study how binding probability P is affected by the impacts of individual transcription
factors. Let P (qA) = P (qA, qB = 0) denote the binding probability of RNA polymerase at the
promoter under the impact of the transcription factor A in the absence of the transcription factor
B. From Eq. (21) it follows that

P (qA) =
qR(1 + qA ΩRA)

qR(1 + qA ΩRA) + 1 + qA

. (27)

We re-obtain the basal binding probability for

P (qA = 0) = P0 (28)

and define the saturation probability PA,sat like

PA,sat = P (qA → ∞) =
qR ΩRA

1 + qR ΩRA

≈ P (qA ≫ 1) . (29)

Note that the case qA ≫ 1 implies that ΩRA qA ≫ 1 holds because we have ΩRA ≥ 1 for activators.
From ΩRA qA ≫ 1 it follows that we can neglect the additive ’+1’ term such that 1 + ΩRA qA ≈
ΩRA qA. This is an approximation as indicated in Eq. (29). The question arises whether the
saturation probability PA,sat is higher than the basal binding probability P0 (which would be
consistent with our notion of an activator). In order to answer this question note that the function

f(z) =
z

1 + z
(30)

(which is just the Michaelis-Menten enzyme kinetics saturation curve) is known to increase mono-
tonically from f(z = 0) = 0 to f(z → ∞) = 1. Since we have P0 = f(z = qR) and PA,sat =
f(z = qR ΩRA) and ΩRA ≥ 1 we conclude that PA,sat ≥ P0. In particular, for ΩRA > 1 we have
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PA,sat > P0. Moreover, differentiating P (qA) with respect to qA and taking again ΩRA ≥ 1 into
account gives us

d

dqA

P (qA) = qR

ΩRA − 1

[1 + qR + qA(1 + qR ΩRA)]2
≥ 0 (31)

and dP/dqA > 0 for ΩRA > 1. In short, the binding probability and consequently the transcription
rate r increases monotonically as a function of activator concentration [TA] assuming that the
activator decreases the binding energy of RNA polymerase (i.e., assuming that ERA < 0 or
ΩRA > 1). By analogy, for the transcription factor B we obtain

P (qB) = P (qA = 0, qB) =
qR(1 + qB ΩRB)

qR(1 + qB ΩRB) + 1 + qB

(32)

with
P (qB = 0) = P0 (33)

and

PB,sat = P (qB → ∞) =
qR ΩRB

1 + qR ΩRB

≈ P (qB ≫ 1) (34)

with PB,sat ≥ P0. The function P (qB) increases monotonically with [TB] for negative energy shifts
ERB < 0 (ΩRB > 1).
In the presence of both activators A and B the saturation binding probability is defined by

PAB,sat = P (qA → ∞, qB → ∞) ≈ P (qA ≫ 1, qB ≫ 1) . (35)

In this limiting case the quadratic terms in Eq. (21) dominate the linear and constant terms.
Consequently, we obtain

PAB,sat =
qR ΩRA ΩRB ΩAB ΩRAB

1 + qR ΩRA ΩRB ΩAB ΩRAB

= f(qR ΩRA ΩRB ΩAB ΩRAB) ≥ P0 . (36)

For ΩRA ΩRB ΩAB ΩRAB > 1 we have PAB,sat > P0.
In order to show that the probability P (qA, qB) increases monotonically in both directions qA and
qB we compute the partial derivative ∂P (qA, qB)/∂qA for fixed qB . For sake of readability, we put
qA = x. Then, Eq. (21) can equivalently be expressed as

P (x, qB) =
xe + g

x(e + w) + g + h
(37)

with

e = qR ΩRA(1 + qB ΩRB ΩAB ΩRAB) ,

w = 1 + qBΩAB ,

g = qR(1 + qBΩRB) ,

h = 1 + qB . (38)

First we check whether or not P (x → ∞, qB) ≥ P (x = 0, qB) holds for all qB . We have

P (x = 0, qB) =
g

g + h
, P (x → ∞, qB) =

e

e + w
. (39)

We see that I = P (x → ∞, qB) − P (x = 0, qB) = I∗/[(e + w)(g + h)] with

I∗ = eh − gw . (40)

A detailed calculation shows that

I∗

qR

= R + UqB + V q2
B (41)
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with

R = ΩRA − 1 ≥ 0 , (42)

U = ΩRA + ΩRA ΩRB ΩAB ΩRAB − ΩRB − ΩAB , (43)

V = ΩRB ΩAB(ΩRA ΩRAB − 1) ≥ 0 . (44)

In order to determine the sign of the expression U we consider first the special case ΩAB = ΩRAB =
1. In this case we have U = (ΩRA − 1)(ΩRB + 1) ≥ 1 because we have ΩRA, ΩRB ≥ 1. From
Eq. (43) it is clear that U increases monotonically as function of ΩAB and ΩRAB . Consequently,
we have U ≥ 0 for all ΩRA, ΩRB, ΩAB, ΩRAB ≥ 1. This implies that I∗ ≥ 0 and I ≥ 0 for all
qB. Consequently, we have shown that P (x → ∞, qB) ≥ P (x = 0, qB) holds irrespective of qB.
Having obtained this intermediate result, we can compute the partial derivative ∂P (x, qB)/∂x.
From Eq. (37) we obtain

∂

∂x
P (x, qB) =

I∗

[x(e + w) + g + h]2
≥ 0 (45)

with I∗ defined in Eq. (40). By analogy, we find

∂

∂y
P (qA, y) ≥ 0 (46)

for y = qB . In summary, the function P (qA, qB) is a monotonically increasing function with
respect to the relative concentrations qA and qB provided that we assume that the energy shifts
ERA, ERB , ERAB induced by the transcription factors A and B as well the two-body interaction
energy EAB are negative.

5 Less-then-additive and greater-than-additive effects

5.1 Difference measure for two activators

In the main text we introduced the difference

D = P (qA, qB) − [P (qA) + P (qB)] (47)

that actually is a function of the seven dimensional vector

x = (qR, qA, qB, ΩRA, ΩRB , ΩAB, ΩRAB) . (48)

If D > 0 (D < 0) we have a greater-than-additive (less-than-additive) effect. In the following
sections, we conduct a rigorous mathematical analysis in order to determine relevant subspaces of
the seven dimensional space spanned by x in which either D < 0 or D > 0 holds. That is, we will
discuss some of the proofs leading to the results summarized in Tables 2 and 3 of the main text.

5.1.1 Low transcription factor concentrations

At qA = qB = 0 we have

D = −P0 = − qR

1 + qR

< 0 , (49)

see Eqs. (26), (28), (33). Since P (qA, qB) and D(qA, qB) are continuous functions in qA and
qB, for sufficiently low concentrations qA ≈ 0 and qB ≈ 0 the quantity D remains negative.
Mathematically speaking, Eq. (49) implies that there exists a parameter ǫ > 0 such that

D < 0 ∀ 0 ≤ q2
A + q2

B < ǫ . (50)

We will derive below several cases in which critical values for ǫ can be derived, see Eq. (60) and
Section 5.2 (’Cross-over behavior induced by the dose increase of transcription factors’).
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5.1.2 Weak activators

According to the model defined by Eq. (21), the transcription factors A and B have an impact
on the transcription rate r and the binding probability P only if they interact with RNAP either
independently via energy shifts ERA and ERB or via the three-body interaction ERAB. If the
transcriptional machinery only exhibits an interaction between the transcription factors A and B
then it is intuitively clear that the binding probability P and consequently the transcription rate
r is not affected by the transcription factors. In fact, if we put ΩRA = ΩRB = ΩRAB = 1 (i.e., use
ERA = ERB = ERAB = 0) then Eq. (21) reads

P (qA, qB) =
qR s

qR s + s
=

qR

1 + qR

= P0 (51)

with s = 1 + qA + qB + qA qB ΩAB. Likewise, from Eqs. (27) and (32) we obtain P (qA) = P0 ∀ qA

and P (qB) = P0 ∀ qB such that
D = −P0 < 0 ∀ qA, qB . (52)

Since P (qA, qB) and D(qA, qB) are continuous functions in ΩRA, ΩRB, and ΩRAB the quantity D
remains negative for sufficiently weak activators, i.e., for activators with ΩRA, ΩRB, ΩRAB ≈ 1 (or
ERA, ERB, ERAB ≈ 0).

5.1.3 Nonlinearities of the thermostatistical transcriptional machinery

We study the impact of the energy shifts ERA and ERB on the binding probability P . To this end,
we put EAB = ERAB = 0 (i.e., ΩAB = ΩRAB = 1). Note that the energy shifts ERA and ERB are
induced independently by the transcription factors. Nevertheless for ΩAB = ΩRAB = 1 the RNA
polymerase binding probability P defined by Eq. (21) is a nonlinear function with respect to qA

and qB. Due to this nonlinearity the transcriptional machinery may exhibit greater-than-additive
and less-than-additive effects.
For sake of readability, we put qA = x and qB = y. Substituting Eq. (21), (27) and (32) into
Eq. (47) we obtain

D(x, y) =
D̃(x, y)

ZxyZxZy

(53)

with the normalization factors given by

Zxy = qR(1 + xΩRA)(1 + y ΩRB) + (1 + x)(1 + y) > 0 ,

Zx = qR(1 + xΩRA) + 1 + x > 0 ,

Zy = qR(1 + y ΩRB) + 1 + y > 0 . (54)

The quantity of interest is the nominator D̃ that determines the sign of D. A detailed calculation
shows

D̃(x, y) = qR(1 − 2qR)(1 + x)(1 + y)uv
︸ ︷︷ ︸

’first term’

−qR [(1 + x)v + (1 + y)u] (1 + x)(1 + y) − q3
Ru2v2 (55)

with
u(x) = 1 + xΩRA , v(y) = 1 + yΩRB . (56)

The first term on the right-hand-side of Eq. (55) can be positive or negative. The second and
third terms occurring in Eq. (55) are negative. Consequently, greater-than-additive effects due to
nonlinearities must come from that first expression. More precisely, the first term must outbalance
the second and third terms.
We see immediately that if RNAP concentrations are greater than half of the RNAP dissociation
constant (i.e., qR ≥ 1/2), then the first term is negative and so is D̃. Consequently, we have

qR ≥ 0.5 ⇒ D < 0 ∀qA, qB . (57)
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That is, nonlinearities cannot contribute to greater-than-additive effects at relative high RNA
polymerase concentrations.
Let us next consider the case qR < 0.5. For qA = qB = 0 we obtain D̃ = −qR(1 + qR)2 < 0 which
is consistent with the result derived in Section 5.1.1 (’Low transcription factor concentrations’).
For qA, qB > 0 we break down Eq. (55) into components like

D̃(x, y) = qR(1 + x)(1 + y)uv

−2q2
R(1 + x)(1 + y)uv

−qR(1 + x)(1 + y)(u + v)

−qR(1 + x)(1 + y)(uy + vx) − q3
Ru2v2 . (58)

Taking the first and third expression in that list together and exploiting the definitions (56), we
obtain

D̃(x, y) = qR(1 + x)(1 + y)(uv − u − v)

−2q2
R(1 + x)(1 + y)uv

−qR(1 + x)(1 + y)(uy + vx) − q3
Ru2v2

= qR(1 + x)(1 + y) {xy ΩRAΩRB − 1}
−2q2

R(1 + x)(1 + y)uv − qR(1 + x)(1 + y)(uy + vx) − q3
Ru2v2 . (59)

Consequently, we can predict a parameter range in that only less-than-additive effects can be
observed:

D < 0 ∀ qA, qB : qA qB ≤ ǫ′ =
1

ΩRA ΩRB

. (60)

The critical value qA qB ΩRA ΩRB = 1 corresponds in the energy space to ERA + ERB + ∆GA,0 +
∆GB,0 − RT ln([TA][TB]) = 0 with ∆Gn,0 = Gn,0,bound − Gn,0 and n = A, B. More precisely, for
ERA + ERB + ∆GA,0 + ∆GB,0 − RT ln([TA][TB]) > 0 (< 0) we have qA qB ΩRA ΩRB < 1 (> 1).
Consequently, Eq. (60) can alternatively be expressed by

D < 0 ∀ [TA], [TB] : ∆GA,0 +∆GB,0−RT ln([TA][TB]) > −(ERA +ERB) = |ERA +ERB | . (61)

Note that while we assume that ERA, ERB ≤ 0 holds for activator-induced energy shifts, the
expression ∆GA,0 +∆GB,0−RT ln([TA][TB]) can assume positive or negative values. However, in
the limit of small concentrations (Tn → 0) this term becomes positive.
Having examined the case of relatively small transcription factor concentrations, we next focus on
the saturation domain: qA, qB ≫ 1. In this case we have u(x) = ΩRAx, v = yΩRB and need to
take only expressions that are of order 4 into account. Eq. (55) becomes

D̃(x ≫ 1, y ≫ 1) =
{
qR(1 − 2qR)ΩRA ΩRB − qR [ΩRA + ΩRB] − q3

RΩ2
RA Ω2

RB

}
x2 y2

= qR







(ΩRA − 1)(ΩRB − 1) − 1
︸ ︷︷ ︸

’first term’

−2qRΩRA ΩRB − q2
RΩ2

RA Ω2
RB







x2 y2 .

(62)

Note that the curled bracket in Eq. (62) can alternatively be expressed by (see main text)

W (qR, ΩRA, ΩRB) = (ΩRA − 1)(ΩRB − 1) − (1 + qRΩRA ΩRB)2 . (63)

We have D < 0 (D > 0) for W < 0 (W > 0). Let us return to Eq. (62). If the expression labeled
’first term’ in Eq. (62) is positive and outbalances all other terms in Eq. (62) then we have D̃ > 0
and we can observe a greater-than-additive effect caused by the nonlinearities of the transcriptional
machinery. Let us illustrate this regime explicitly for the special case ΩRA = ΩRB = Ω. In this
case, we have

D̃ = qRΩx2y2I , I(Ω, qR) = Ω(1 − 2qR) − 2 − q2
RΩ3 . (64)
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The function I(Ω, qR) is positive in a particular domain of the Ω-qR space. The critical boundary
line qR(Ω) in this space is defined by I = 0 and can be determined by solving a quadratic equation.
We obtain

qR(Ω) =
Ω − 2

Ω2
(65)

for Ω ≥ 2. The function is shown in Figure 2A and is discussed in detail in the main text.

We close this section by considering the special case in which the relations qR ≈ 0, qAΩRA ≫ 1,
and qBΩRB ≫ 1 hold [6, 7]. Under these conditions, gene expression exhibits relatively small
transcription rates but strong activation (see also the main text). Note that we do not necessarily
assume that qA ≫ 1 and qB ≫ 1 holds such that our following considerations are valid for both
small and large activator concentrations [TA] and [TB] as long as the relations qAΩRA ≫ 1 and
qBΩRB ≫ 1 are satisfied. We also put ΩAB ≥ 1 and to not require ΩAB = 1 (EAB = 0). For
qR ≈ 0, qAΩRA ≫ 1, and qBΩRB ≫ 1 the RNA polymerase binding probabilities (21), (27), and
(32) read

P (x, y) = qR

xΩRA + y ΩRB + xy ΩRA ΩRB ΩAB

1 + x + y + xyΩAB

(66)

and

P (x) = qR

xΩRA

1 + x
, P (y) = qR

y ΩRB

1 + y
(67)

with x = qA and y = qB . Note that in Eqs. (66,67) we have neglected all terms of order q2
R and

higher order. We can express Eq. (66) like

P (x, y)

qR

=
C + ΩRA ΩRB ΩABB

E + ΩABB
(68)

with B = xy > 0, E = 1 + x + y > 0 and C = xΩRA + y ΩRB > 0. From Eq. (67) it follows that

P (x) + P (y)

qR

=
C + (ΩRA + ΩRB)B

E + B
(69)

such that for D = P (x, y) − [P (x) + P (y)] (see Eq. (47)) we obtain

D(x, y) = qR

D̃(x, y)

(E + ΩABB)(E + B)
. (70)

Since (E+ΩABB)(E+B) > 0 the sign of D is determined by the sign of D̃. A detailed calculation
yields

D̃

B
= −C(ΩAB − 1) + E {f1f2ΩAB − [f1 + f2]} + B ΩAB {f1f2 − [f1 + f2]} , (71)

where (to improve readability) we have used the notation f1 = ΩRA and f2 = ΩRB . We are
interested in identifying conditions such that a greater-than-additive effect can be observed that is
caused by the interplay between the combined, independent activation of the promoter by means
of two transcription factors and the nonlinearities of the transcriptional machinery. To this end, we
focus on the parameter domain in which f1f2 > f1+f2 holds (i.e., we have ΩRAΩRB > ΩRA+ΩRB).
Then, f1f2ΩAB > ΩAB[f1 + f2] (because ΩAB ≥ 1), which implies

D̃

B
≥ −C(ΩAB − 1) + E {(ΩAB − 1)[f1 + f2]} + B ΩAB {f1f2 − [f1 + f2]} , (72)

Since we have E(f1 + f2) > C (for definitions of E and C see above), we further conclude that

D̃

B
≥ B ΩAB {f1f2 − [f1 + f2]} = B ΩAB {ΩRA ΩRB − [ΩRA + ΩRB]} > 0 . (73)
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We are left with the problem to determine the parameter domain for which the inequality ΩRAΩRB >
ΩRA + ΩRB holds. In the ΩRA-ΩRB parameter space the critical line ΩRAΩRB = ΩRA + ΩRB

defines a hyperbola function of the form

ΩRB(ΩRA) =
ΩRA

ΩRA − 1
, (74)

see Figure 4. In summary, we conclude that activation by means of two transcription factors A and
B result in a greater-than-additive effect (D > 0) for parameters ΩRA and ΩRB that correspond
to a point (ΩRA, ΩRB) located ’above’ the hyperbola (74) provided that qR is sufficiently small
and that the products qA ΩRA and qB ΩRB (reflecting effective activation levels of the promoter)
satisfy qA ΩRA ≫ 1 and qB ΩRB ≫ 1.

5.1.4 Three-body interactions

As stated in the main text, we examine in this section the analytically solvable problem of gene
expression subjected to strong activations at low RNAP concentrations. That is, we assume that
qAΩRA ≫ 1, qBΩRB ≫ 1, and qR ≈ 0 hold (see also the second half of Section 5.1.3). Furthermore,
we put EAB = 0 (ΩAB = 1) and focus on the role of the energy shift ERAB ≤ 0 (ΩRAB ≥ 1).
For qR ≈ 0, qAΩRA ≫ 1, qBΩRA ≫ 1, ΩAB = 1 the joint and marginal probabilities defined by
Eqs. (21), (27), and (32) become

P (x, y) = qR

xΩRA + y ΩRB + xy ΩRA ΩRB ΩRAB

(1 + x)(1 + y)
(75)

and

P (x) = qR

xΩRA

1 + x
, P (y) = qR

y ΩRB

1 + y
(76)

with x = qA and y = qB (again we have neglected all terms of order q2
R and higher order). The

difference (47) can be written like D = D̃/[(1 + x)(1 + y)] with

D̃(x, y) =
qRxy

ΩRAB

{Ω∗

RA Ω∗

RB − [Ω∗

RA + Ω∗

RB]} (77)

using the re-scaled parameters Ω∗

RA = ΩRAB ΩRA and Ω∗

RB = ΩRAB ΩRB. From Eq. (77) it
follows that in the two-dimensional space spanned by ΩRA and ΩRB (when ΩRAB is considered
as a fixed parameter) there is a critical boundary defined by the hyperbola

ΩRB(ΩRA) =
1

ΩRAB

(
ΩRA

ΩRA − 1/ΩRAB

)

. (78)

The hyperbola is shown in Figure 6. Transcription exhibits a greater-than-additive effect (less-
than-additive effect) if the parameters ΩRA and ΩRB correspond to a location ’above’ (’below’)
the hyperbola — as indicated in Figure 6 — and if the additional assumptions made earlier hold:
qR ≈ 0, qA ΩRA ≫ 1, qB ΩRB ≫ 1, ΩAB = 1 (EAB = 0). We would like to point out that Eq. (78)
includes the case ΩRAB = 1. In this case, Figure 6 is identical with Figure 4. In this context, it is
important to recall the main difference between the derivations leading to Figure 4 and Figure 6.
Figure 4 shows the critical boundary line for ΩRA and ΩRB parameters assuming that ΩAB ≥ 1 and
ΩRAB = 1 hold, whereas Figure 6 was derived under the assumptions ΩAB = 1 and ΩRAB ≥ 1.
Under the condition ΩAB = 1 and ΩRAB ≥ 1 we can determine the separation line between
D > 0 and D < 0 parameter domains (Figure 6). In contrast, under the conditions ΩAB ≥ 1
and ΩRAB = 1 we can only determine the boundary line that identifies sufficient conditions for a
parameter domain in which D > 0 holds (Figure 4).
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5.1.5 Saturation case at low RNAP concentrations

For x, y → ∞ (or x, y ≫ 1) Eqs. (75) and (76) yield the saturation binding probabilities

Pxy,sat = qRΩRA ΩRB ΩRAB , Px,sat = qRΩRA , Py,sat = qRΩRB . (79)

Alternatively, these probabilities can be derived from Eqs. (29,34,36) by putting qR ≈ 0 and
ΩAB = 1. The corresponding transcriptional activities are given by (see Eq. (16) in the main text)

rxy,sat = β qRΩRA ΩRB ΩRAB , rx,sat = β qRΩRA , ry,sat = β qRΩRB (80)

and the basal activity is given by r0 = β qR. It has been suggested to use the relations in Eq. (80) to
estimate the parameters ΩRA, ΩRB , ΩRAB from r0, rxy,sat, rx,sat, and ry,sat or alternatively from
the fold changes rxy,sat/r0, rx,sat/r0, and ry,sat/r0 [7]. The advantage of this procedure is that it
is not necessary to know the values of β and qR. We obtain: ΩRA = rx,sat/r0, ΩRB = ry,sat/r0,
ΩRAB = rxy,sat/(r0 ΩRA ΩRB).

5.2 Cross-over behavior induced by the dose increase of transcription

factors

In this section, we put qA = qB = x and ΩRA = ΩRB = ΩRx (see main text). In this case, the
probability (21) reads

Pxx =
qR

(
1 + 2xΩRx + x2 Ω2

Rx Ωxx ΩRxx

)

qR (1 + 2xΩRx + x2 Ω2
Rx Ωxx ΩRxx) + 1 + 2x + x2 Ωxx

(81)

and describes the RNAP binding probability of a promoter with two identical binding sites. We
compare this binding probability with the binding probability of RNAP at a promoter that exhibits
only a single binding site for the transcription factor X . In this case, from Eq. (27) it follows that
the binding probability of the RNA polymerase is given by

Px =
qR(1 + xΩRx)

qR(1 + xΩRx) + 1 + x
. (82)

Our aim is to determine the critical value xc of the cross-over between regimes Pxx < 2Px (less-
than-additive) and Pxx > 2Px (greater-than-additive). To achieve this aim, we solve simultane-
ously the inequalities Pxx < 2Px and Pxx > 2Px, which we write in a concise form like

Pxx(x) ≷ 2Px(x) . (83)

First of all, we express Pxx and Px in terms of

Pxx =
A

A + B
, Px =

A′

A′ + B′
(84)

with

A = qR

(
1 + 2xΩRx + x2 Ω2

Rx Ωxx ΩRxx

)
,

B = 1 + 2x + x2 Ωxx ,

A′ = qR(1 + xΩRx) ,

B′ = 1 + x . (85)

Then, we use the function χ(z) = (1 − z)/z = −1 + z−1, which is monotonically decreasing for
z > 0. We apply this function to both sides of Eq. (83). Since χ is monotonically decreasing we
need to change the directions of the inequality signs such that

χ (Pxx) ≶ χ (2Px) . (86)

A detailed calculation shows that χ(Pxx) = B/A and χ(2Px) = (B′ − A′)/2A′. After some
algebraic transformations we arrive at the expressions

2(1+2x+x2Ωxx)(1+xΩRx) ≶ {(1 + x) − qR(1 + ΩRxx)}
(
1 + 2xΩRx + x2 Ω2

Rx Ωxx ΩRxx

)
. (87)
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5.2.1 Cross-over responses and re-entrant responses caused by nonlinearities of the

thermostatistical transcriptional machinery

We solve next Eq. (87) for Ωxx = ΩRxx = 1 to study the impact of the energy shift ERx (ΩRx).
Substituting Ωxx = ΩRxx = 1 into Eq. (87), we obtain

I(x) = ax2 + bx + c ≶ 0 (88)

with
a = 2 − ΩRx + qRΩ2

Rx , b = 3 + ΩRx(2qR − 1) , c = 1 + qR > 0 . (89)

We apply the quadratic formula to I(xc) = 0 to obtain the values of critical concentrations of
the activator X for which we see precise additivity in transcriptional output, and consequently
switches between less-than-additive and greater-than-additive concentration regions for X . This
yields

xc = − b

2a

(

1 ±
√

1 − 4ca

b2

)

, (90)

which can equivalently be expressed by

xc =
−b ± (ΩRx − 1)

√
1 − 8qR

2a
. (91)

In order to precisely examine these critical values, we first need to distinguish between three
broad cases for values of qR, before breaking down these cases into various subcases. Our general
categories are as follows: qR = 1/8, qR > 1/8 and qR < 1/8.
For qR = 1/8, Eq. (91) provides us with exactly one critical value, which is only non-negative
(and meaningful as a critical activator concentration) when ΩRx > 4. For x < xc transcription
is less-than-additive, decreasing in magnitude until additivity at precisely x = xc. Thereafter,
transcription becomes less-than-additive again. When we have ΩRx < 4, we see no non-negative
crossover point, and thus we have the same behavior across the full range of concentrations of X ,
namely a less-than-additive regime. For ΩRx = 4, the quadratic reduces to a constant, and so we
see less-than-additivity for each value of x. Having said that we would like to point out that it is
rate that the case qR = 1/8 will occur, since it requires a precise value of qR. Thus, the remaining
two cases qR > 1/8 and qR < 1/8 are our principal concern.
If the normalized RNA polymerase concentration exceeds the threshold concentration qR > 1/8,
we have only complex solutions (91) to the quadratic equation (88) with I = 0. Consequently,
we have no crossover point, and have the same behavior throughout the whole range of activator
concentrations. Analysis of Eqs. (88, 91) allows us to conclude that only less-than-additivity is
possible for any parameter value ΩRx and activator doses x. This result is consistent with the result
derived earlier in Section 5.1.3 (’Nonlinearities of the thermostatistical transcriptional machinery’),
namely, that for qR > 1/2 promoters involving two independently activating transcription factors
operate only in a less-than-additive mode.
Our third and final case, where qR < 1/8, is where we see the most interesting behavior. Since
c > 0 by definition, we need to consider four situations, each yielding different behavior. These
are (i) a > 0 and b > 0,(ii) a > 0 and b < 0,(iii) a < 0 and b > 0 and (iv) a < 0 and b < 0.
Each of these pairs of parameter ranges are possible, given the restraints on values of ΩRx > 1
and qR < 1/8, and does not reach any contradictions for parameter values.
The most interesting behavior is observed when a > 0 and b < 0. Since Eq. (88) with I = 0 reads
ax2 + bx = −c with c > 0 we see that the left-hand-side LHS = ax2 + bx first decays for x ≈ 0
(because of b < 0 and the linear term dominates), then intersects with the horizontal line at −c
but finally increases (because of a > 0 and the quadratic term dominates) such that there is a
second intersection point with the horizontal line at −c. In doing so, two real, positive roots, xc,1

and xc,2 are obtained. For x < xc,1 or x > xc,2 gene expression is less-than-additive, whereas for
x ∈ (xc,1, xc,2) gene expression is greater-than-additive. For an illustration see Figure 9.
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5.2.2 Cross-over dose responses induced by three-body interactions

In this section, we put ERx = 0 and Exx = 0 (ΩRx = Ωxx = 1) and focus on the energy shift ERxx

related to the three-body interaction between RNA polymerase and two molecules of the same
transcription factor bound at two different promoter sites A and B. In this case, Eq. (87) reads

2(1 + x)2 ≶ (1 − qR)
(
1 + 2x + x2 ΩRxx

)
. (92)

The critical value xc for which the equal sign holds (rather than an inequality sign) can be
determined by solving a quadratic equation in x. A detailed calculation shows that

xc =
1 + qR

a

(

1 +

√

1 +
a

1 + qR

)

(93)

with
a = (1 − qR)ΩRxx − 2 . (94)

The critical value (93) only exists for parameters qR and ΩRxx such that a > 0. That is, for a ≤ 0
the transcriptional activation exhibits a less-than-additive effect for any relative activator dose x.
In contrast, if qR < 1 and ΩRxx > 2/(1 − qR) then we have a > 0 and for small doses x < xc

transcription with a double binding site promoter shows a less-than-additive effect, whereas for
x > xc the stimulation induced by means of two occupied promoter sites yields greater-than-
additive effects, see Figure 10.
Let us discuss briefly how xc depends on ΩRxx and qR. To this end, let us keep qR constant
and vary ΩRxx. For example, for qR = 0.6 we would move from the location ΩRxx = 10 (plus
sign in Figure 10) to the left towards the critical boundary with a = 0 and to the right towards
ΩRxx → ∞. If we approach the critical boundary with a = 0 then we have a → 0 and from Eq. (93)
it follows that xc goes to infinity. That is, the closer the transcriptional machinery operators at
the critical boundary, the higher is the transcription factor dose necessary to induce a greater-
than-additive response. If we move in the parameter space ΩRxx − qR from the point qR = 0.6,
ΩRxx towards larger values of ΩRxx, then in the limiting case ΩRxx → ∞ we have a → ∞ which
implies xc = 0. That is, if the three-body-interaction shifts the RNA polymerase binding energy
in a dramatic fashion towards lower energy values then for even the smallest cooperative stimuli
x > 0 we observe greater-than-additive responses. In short, xc has a singularity (goes to infinity)
at the critical line with ΩRxx = 2/(1 − qR) (a = 0), decays monotonically as a function of ΩRxx,
and finally approaches zero in the limiting case ΩRxx → ∞.
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