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Supplementary Figure 1. Heat map of pairwise correlations of hemimethylated CpG
dyads in the FMR1 data. To compute the correlations, we represented each dyad in the data as
being in one of three states: hemimethylated with the methyl group on the top strand (denoted by 1),
hemimethylated with the methyl group on the bottom strand (denoted by −1), and fully- or
un-methylated (both denoted by 0). We then calculated Pearson correlation for each pair of CpG sites,
and represented each correlation as a rectangle in the heat map. The rectangles immediately off the
diagonal show, on average, relatively high correlations between adjacent sites, indicating short-range
dependence. A permutation test (permuting CpG sites) was carried out for the average of correlations
immediately off the diagonal and confirmed this dependence with a significant p value of 8× 10−4.
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Supplementary Figure 2. Robustness of estimates of dissociating probability ρ to different
prior distributions for the FMR1 data. Dark lines, not noticeable due to range on the vertical axis
in some plots, indicate the density functions of prior distributions. For ρ1d of DNMT1 (Top Row), its
estimation is robust in the sense that the estimates do not vary appreciably under different priors. For
ρ3p (Middle Row) and ρ3d (Bottom Row) of the DNMT3s, the posterior distributions are essentially
the same as the priors, indicating that the data are not very informative for these values. In the bottom
two plots of the middle column, the data are not informative enough to produce estimates as small as
below −3 on log10 scale. See Sec. 2 in Supplementary Text for details on the priors.
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Supplementary Figure 3. Posterior distributions of key parameters under the main HMM
for the FMR1 data. Figure 4 of the main text is shown in the left column, with scales different from
those in Figure 4(A1)-(A3) in the main text, for ease in comparison with other similar supplementary
figures. Left and right columns show dissociating probability ρ (Left Column) and reassociating
probability τ (Right Column) for DNMT1 on the daughter strand (Top Row), the DNMT3s on the
parent strand (Middle Row), and the DNMT3s on the daughter strand (Bottom Row). Middle
column shows the maintenance (Top) and de novo (Middle) methylation probabilities for DNMT1
when associated with DNA, as well as its hemi-preference ratio (on the log10 scale; Bottom). Dark
lines, where shown, indicate the density of prior distributions assigned to the parameters. See Sec. 2 in
Supplementary Text for details on the priors.
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Supplementary Figure 4. Posterior distributions of key parameters under our HMM for
the G6PD data. Left and right columns show dissociating probability ρ (Left Column) and
reassociating probability τ (Right Column) for DNMT1 on the daughter strand (Top Row), the
DNMT3s on the parent strand (Middle Row), and the DNMT3s on the daughter strand (Bottom
Row). Middle column shows the maintenance (Top) and de novo (Middle) methylation probabilities
for DNMT1 when associated with DNA, as well as its hemi-preference ratio (on the log10 scale;
Bottom). Dark lines, where shown, indicate the density of prior distributions assigned to the
parameters.
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Supplementary Figure 5. Robustness of estimates of reassociating probability τ to
different prior distributions for the FMR1 data. Dark lines indicate the density functions of
prior distributions. The posterior distribution for any τ is essentially the same under the uniform(0, 1)
(Left Column) and log10 uniform(−4, 0) (Right Column) priors. See Sec. 2 of Supplementary Text
for details on the priors.
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Supplementary Figure 6. Estimation of hemi-preference ratio for the DNMT3s on the
daughter strand under the variant HMM for the FMR1 data. This variant HMM allows for
the possibility that DNMT3s on the daughter strand have different probabilities of adding methyl group
to hemi- as compared with unmethylated dyads. This contrasts with the main HMM, which assumes
equal probabilities for these two types of events. Posterior distributions are shown for maintenance-type
(Top) and de novo-type (Middle) methylation probabilities, and hemi-preference ratio (Bottom), of
the DNMT3s on the daughter strand. Dark lines show density functions of the priors. The FMR1 data
are not informative about these parameters. Inference of other parameters is the same as under the
main HMM. See Supplementary Text for details of this variant model.
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Supplementary Figure 7. Posterior distributions of key parameters under our HMM for
the LEP data from the adipose tissues (fat). Left and right columns show dissociating
probability ρ (Left Column) and reassociating probability τ (Right Column) for DNMT1 on the
daughter strand (Top Row), the DNMT3s on the parent strand (Middle Row), and the DNMT3s on
the daughter strand (Bottom Row). Middle column shows the maintenance (Top) and de novo
(Middle) methylation probabilities for DNMT1 when associated with DNA, as well as its
hemi-preference ratio (on the log10 scale; Bottom). Dark lines, where shown, indicate the density of
prior distributions assigned to the parameters.
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Supplementary Figure 8. Posterior distributions of key parameters under our HMM for
the LEP data from peripheral blood leukocytes (blood). Left and right columns show
dissociating probability ρ (Left Column) and reassociating probability τ (Right Column) for
DNMT1 on the daughter strand (Top Row), the DNMT3s on the parent strand (Middle Row), and
the DNMT3s on the daughter strand (Bottom Row). Middle column shows the maintenance (Top)
and de novo (Middle) methylation probabilities for DNMT1 when associated with DNA, as well as its
hemi-preference ratio (on the log10 scale; Bottom). Dark lines, where shown, indicate the density of
prior distributions assigned to the parameters.
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Supplementary Figure 9. Posterior distribution of the rate of measurement error due to
inappropriate bisulfite conversion, c, under the main HMM for the FMR1 data.
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Supplementary Figure 10. Impact of measurement errors due to bisulfite conversion on
estimation under our HMM for the FMR1 data. Format of figure is the same as for
Supplementary Figure 3. We re-ran the main HMM on the FMR1 data with the inappropriate
conversion error rate c fixed to 0. The other measurement error rate b is still fixed to be 0.003 (setting
b = 0 did not produce noticeably different results). Comparison with Supplementary Figure 3 suggests
that (i) the inappropriate bisulfite conversion error, although having a significantly non-zero rate, does
not affect the inference of processivity. Estimates of ρ are qualitatively the same whether this error is
accounted for or not; (ii) not accounting for this error inflates δ1d and deflates µ1d, which leads to a
slightly reduced hemi-preference ratio (see numerical summaries in Supplementary Table 1). This is
because, under this c = 0 model, some observed hemimethylated dyads, although due to genuine
measurement errors, now have to be explained by DNMT1 activities; (iii) not accounting for this error
also inflates τ3d and thus the overall inferred activity level of the DNMT3s (Supplementary Table 1).
Activities of DNMT3s on the daughter strand are invoked under the c = 0 model to explain some
hemimethylated dyads that are due to genuine measurement errors.
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Supplementary Figure 11. Impact of PCR crossover error on inference for the FMR1
data. Format of figure is the same as for Supplementary Figure 3. We removed pattern #82 (see
Figure 2 in the main text), which is a plausible product of PCR crossover, and re-ran the main HMM to
obtain posterior distributions of the key parameters. Results are essentially the same as those in
Supplementary Figure 3, suggesting that PCR crossover errors are likely to have a negligible impact on
the inference.
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Supplementary Figure 12. Re-analysis of published in vitro data on mouse DNMT1.
Published data are taken from figures of Goyal et al. [1] and Vilkaitis et al. [2], as indicated in the
figure. Positions in bp of the CpG sites for data from [1] are for Substrate 1 as given in their
Supplemental Information. Positions in bp of the CpG sites for data from [2] are as in Figure 2 of their
main text. Each row shows estimates from a different published data set using our modified HMM
model (see Sec. 1.2 in Supplementary Text for details). Key parameters here are dissociating
probability ρ1d (Left Column), reassociating probability τ1d (Middle Column), and
bisulfite-conversion error rate c (Right Column).
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Supplementary Figure 13. Impact of the four most informative patterns in the FMR1 data
(see Figure 2 in the main text) on parameter inference. Format of figure is the same as that of
Supplementary Figure 3, although axes ranges differ for some plots. We removed the four most
informative patterns from our FMR1 data and re-ran the main HMM on the remaining FMR1 data.
Posterior distributions of key parameters are displayed. Comparison with Supplementary Figure 3
suggests that (i) the data, even without the four patterns, still provide strong evidence for processivity
in DNMT1, although the inferred level of processivity is reduced. Specifically, dissociating probability
ρ1d is now estimated to be 0.09 (80% CI: 0.005-0.56), corresponding to a mean association tract length
of 11 bp (80%: 2-219 bp); (ii) the data without the four patterns are also informative about other
aspects of DNMT1, such as the overall association level (estimated 0.99 with 80% CI of 0.98-1.00, based
on estimates of ρ1d and τ1d), the maintenance and de novo activity rates, and the hemi-preference ratio.
Estimates of these four parameters are the same as from the complete data; and (iii) reassociating
probability τ1d is estimated much higher here than from the complete data (0.12; 80% CI, 0.07-0.20.
Supplementary Figure 3). Many of the DNMT1 association events are now interpreted as independent
associations at individual CpG sites.
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Supplementary Table 1. Impact of bisulfite-conversion measurement errors on estimation
under the HMM for the FMR1 data.

Estimates from the HMM
estimating c c = 0

DNMT1
Maintenance activity rate µ1d 0.99 (0.97-1.00) 0.96 (0.95-0.97)
De novo activity rate δ1d 0.02 (0.00-0.05) 0.05 (0.01-0.10)
Hemi-preference ratio µ1d/δ1d 58 (Pr{> 25} = 0.9) 21 (Pr{> 10} = 0.9)
DNMT3s on daughter strand
Reassociating probability τ3d 0.01 (0.00-0.03) 0.03 (0.01-0.07)
Average activity level π3d 0.05 (0.01-0.08) 0.10 (0.04-0.15)

The differences between the results under the main HMM estimating c (Supplementary Figure 3) and
that setting c = 0 (Supplementary Figure 10) are shown. The other bisulfite-related measurement error
rate b is set to 0.003 under both models. A uniform (0,1) prior is assigned to ρ for both models. Unless
stated otherwise, the numbers reported here are posterior medians with 80% credible intervals given in
parentheses.

Supplementary Table 2. Parameter estimates under our HMM for the in vitro DNMT1
data sets.

Goyal et al. [1] Vilkaitis et al. [2]Fig. 7A
Parameter Fig. 2B Fig. 3A Upper Panel Lower Panel
Mean association
length (bp)
of DNMT1 192 (146-252) 161 (128-211) 194 (122-401) 133 (91-209)
Dissociating
probability ρ1d 0.005 (0.004-0.007) 0.006 (0.005-0.008) 0.005 (0.002-0.008) 0.008 (0.004-0.011)
Reassociating
probability τ1d 0.006 (0.005-0.008) 0.006 (0.005-0.008) 0.023 (0.012-0.037) 0.007 (0.005-0.010)
Average association
level π1d 0.54 (0.46-0.61) 0.50 (0.41-0.58) 0.82 (0.73-0.89) 0.49 (0.41-0.61)
Measurement error
probability c 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.01 (0.00-0.03) 0.01 (0.00-0.01)

The numbers reported here are posterior medians with 80% credible intervals given in parentheses.
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Supplementary Text

1 Alternative Hidden Markov Models

1.1 HMM to estimate the hemi-preference ratio for the DNMT3s

As mentioned in the main text, our HMM with the emission probability matrix defined in Table 3 in
the main text models the DNMT1 process and the DNMT3s process on the daughter strand in the
same way. Additional constraints are needed to distinguish the two processes. Our earlier analysis
assuming µ3d = δ3d = 1, where µ3d and δ3d are the maintenance activity probability and the de novo
activity probability of the DNMT3s on the daughter strand, respectively, indicated that the reassociating
probability of DNMT1, τ1d, is likely to be close to 1, and that of the DNMT3s on the daughter strand,
τ3d, is likely to be close to 0. Hence, we imposed constraints τ1d > 0.05 and τ3d < 0.05 when estimating
µ3d and δ3d.

1.2 Re-analysis of published in vitro mouse DNMT1 data

Because the DNMT3s were not present in the in vitro experiments published in Vilkaitis et al. [2] and
Goyal et al. [1], we fix in the main HMM reassociating probabilities τ3p and τ3d for the DNMT3s to be 0
and dissociating probabilities ρ3p and ρ3d to be 1. We also fix µ1d to be 1 and δ1d to be 0, because the
template strand is fully (or nearly fully) methylated in these experiments. Key parameters of interest are
then ρ1d, τ1d and measurement error probability c.

2 Bayesian inference under the HMMs

2.1 The likelihood

In a data set of N double-stranded binary methylation patterns at S CpG sites, the i-th pattern is
represented as an unordered pair of binary vectors {xi,yi}. This is an unordered pair because the
hairpin-bisulfite methylation data do not provide information of which strand in each pattern is the
parent strand, and which strand is the daugher. Recall that, accounting for measurement errors, the
pattern on the parent strand is denoted Q′i and that on the daughter strand D′i. We let λ = {τ1d, τ3p,
τ3d, ρ1d, ρ3p, ρ3d, µ1d, δ1d, b, c, mj , j = 1, 2, . . . , S} denote the parameters of interest. The likelihood of
observing N double-stranded patterns given λ is

L(λ; {x,y}) =

N∏
i=1

Pr({Q′i,D′i} = {xi,yi}|λ) (1)

∝
N∏
i=1

{Pr((Q′i,D
′
i) = (xi,yi)|λ) + Pr((Q′i,D

′
i) = (yi,xi)|λ)}, (2)

where (xi,yi) and (yi,xi) in Eq. (2) represent ordered pairs, each corresponding to a strand assignment.
Specifically, (xi,yi) represents that the top strand xi is the parent strand Q′i, whereas the bottom
strand yi is the daughter strand D′i; and (yi,xi) represents that the top strand xi is the daughter
strand D′i, whereas the bottom strand yi is the parent strand Q′i. The strand assignment probability
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Pr{(Q′i,D′i) = (xi,yi)|λ} is computed as follows,

Pr{(Q′i,D′i) = (xi,yi)|λ} =
∑

Mi,R
p
i ,R

d
i

Pr{(Q′i,D′i) = (xi,yi)|Mi,R
p
i ,R

d
i , λ}

× Pr(Mi|λ) Pr(Rp
i |λ) Pr(Rd

i |λ), (3)

where emission probability Pr{(Q′i,D′i) = (xi,yi)|Mi,R
p
i ,R

d
i , λ} is defined in Eq. (3) in the main text.

We use the standard forward-backward algorithm [3], which is a dynamic programming algorithm, to
compute Eq. (3) here. We use the extended Viterbi algorithm (Sec. 4), also a dynamic programming
algorithm, to make inference based on Eq. (3). Probability of the other strand assignment, Pr((Q′i,D

′
i) =

(yi,xi)|λ), is defined and calculated similarly. The strand assignment with a higher posterior probability
between the two possibilities, calculated using estimates of λ, is displayed in Figures 2 and 3 of the main
text.

2.2 Distribution assumptions

Under the Bayesian framework, we assume a prior distribution for each parameter before estimation, and
aim to obtain the posterior distributions, instead of just point estimates, for the parameters of interest
given the observations and the priors. Differences between the posterior and prior distributions for a
parameter reflect the information that the data provide for this parameter. Because of the important role
prior distributions play in parameter estimation, we experimented with different priors for key parameters
ρ and τ to assess their impact on estimation.

We experimented with three prior distributions for each dissociating probability ρ: (i) uniform (0, 1),
which assigns equal probability mass everywhere between 0 and 1. This is the most natural prior for a
probability parameter; (ii) beta (α = 1/2, β = 1/2), also known as Jeffreys prior for proportions [4], which
is a non-informative prior and assigns more probability mass near 0 and 1 than at values in between. For
ρ, the two extremes 0 and 1 correspond to strong processivity and no processvity, respectively. Comparing
the posterior with this prior would allow us to informally test these two hypotheses; and (iii) uniform
(−4, 0) on the log10 scale, which puts more probability mass at values near 0. This prior is particularly
useful if processivity seems to exist. It helps confirm the existence and allows a more accurate estimation
of processivity.

We investigated the effect of priors (i) and (iii) on reassociating probability τ . Prior (ii) was not used
for τ because the the data are fairly informative about τ .

We assigned a uniform (0, 1) prior distribution to the maintenance methylation probability µ1d of
DNMT1, the de novo methylation probability δ1d of DNMT1, and the measurement error rate c. This
assignment induces a prior distribution on the log-transformed hemi-preference ratio, log10(µ1d/δ1d).

To estimate site-specific methylation probability mj , we took a hierarchical modeling approach as in [5]
to reduce complexity. That is, we assumed that all the mj at S sites arise from a single distribution,
beta (rm, gm), such that

E(mj) = rm, Var(mj) = gmrm(1− rm). (4)

As in [5], we assigned a uniform (0,1) prior to mean rm. We used a uniform (−4, 0) prior for scaled
variance log10(gm); this prior captures variability in a wide range, and allows us to distinguish among
small variations, such as 0.001 and 0.01. We consider the variation among mj to be low if log10(gm) < −2,
medium if log10(gm) is between −2 and −1, and high if above 1.

3 The Markov Chain Monte Carlo (MCMC) procedure

We used a Metropolis-Hastings procedure [6] to update parameters in λ = {τ1d, τ3p, τ3d, ρ1d, ρ3p, ρ3d,
µ1d, δ1d, b, c, mj , j = 1, 2, . . . , S} based on the likelihood L(λ; {x,y}) defined in Eq. 2. Specifically, each
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iteration of the MCMC involves the following steps:

Step 1. Updates each of the reassociating probabilities τ and dissociating probabilities ρ.

Step 2. Updates methylation probabilities mj jointly.

Step 3. Updates the mean parameter rm.

Step 4. Updates the scaled variance parameter log10(gm).

Step 5. Updates the measurement error rate c. If the other measurement error rate b were also to
be estimated as well, an additional step similar to this one would be added.

For instance, to update the dissociating probability of DNMT1 whose current value is ρ1d, we generate
a proposal ρ∗M from a normal distribution with ρ1d as the mean, and standard deviation σM . We then
compute log likelihoods with the proposal and with the current value, logL(ρ∗M ; ·) and logL(ρ1d; ·),
respectively. The dot · represents data and current values of other parameters. The proposal is accepted
with probability min(1, A), where the Hastings ratio A = L(ρ∗M ; ·)/L(ρ1d; ·).

The MCMC program, if run long enough, produces the distribution of the parameter of interest. To
check whether this was indeed the case, we ran the program from multiple, vastly different starting points.
Posterior distributions of λ from different runs were close to each other in all the cases we examined,
suggesting that the program worked.

Each run of the MCMC program consisted of 4.2×105 iterations, roughly 27-34 CPU hours depending
on detailed settings. Samples from every 1600-th iteration were recorded, after the initial 20% of the run
(the “burn-in”) was discarded. Runs from different starting points are pooled to produce the posterior
distributions of the parameters of interest.

4 Extended Viterbi algorithm to infer the top two most likely
explanations

The two most likely explanations (with ties) are displayed for some patterns in Figs. 2 and 3 of the
main text. The classic Viterbi algorithm [7,8] finds the most likely combination (explanation) of hidden
states to explain the observed pattern under the hidden Markov model. To find the top n most likely
explanations, we extend the Viterbi algorithm, adopting the partition scheme introduced in [9] and [10].
The extended Viterbi algorithm is as follows:

For each double-stranded pattern of S CpG sites, do the following:

Step 1. Apply the Viterbi algorithm to find the most likely explanation H1 = {h1, h2, . . . , hS},
where hs, s = 1, ..., S, represents a certain combination of methyltransferase activities and their
outcomes at the s-th CpG site. Each hs represents one of 64 possibilities. A possibility could
include, for example, DNMT1 being unassociated with the s-th site, the DNMT3s being associated
with the s-th site on the daughter strand but not on the parent strand, the parent-strand CpG being
unmethylated before replication and remaining unmethylated after replication, and the daughter-
strand CpG becoming methylated. In summary, this possibility represents a de novo methylation
event produced by the DNMT3s on the daughter strand at this site.

Step 2. Partition the search space, now excluding H1, into S subsets, each subset As containing
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explanations whose first s elements are identical to those of H1.

A0 = {h∗1, h∗2, . . . , h∗S} (5)

A1 = {h1, h∗2, . . . , h∗S} (6)

A2 = {h1, h2, h∗3, . . . , h∗S} (7)

.

.

.

AS = {h1, h2, . . . , hS−1, h∗S} (8)

where h∗s are elements different from the s-th element in explanation H1.

Step 3. Apply the Viterbi algorithm to each subset As and compute the probability of the most likely
explanation found for this subset. This step generates a list of length S of candidate explanations.

Step 4. Compare the probabilities of the candidate explanations found in Step 3. Explanations
with the highest probability are the second most likely explanations (allowing for ties) H2.

Step 5. Repeat Steps 2-4 to find the n-th most likely explanations.

5 Model checking

As mentioned in the main text, we analyzed the FMR1 data under a different statistical model in [5], which
we tern the Independent Events Model (IEM), Under the IEM, we were interested in CpG site-specific
maintenance and de novo methylation probabilities, assuming methylation events to be independent across
CpG sites. Our HMM presented in this paper, however, allows methylation events to be dependent across
sites. Both models exploit the fact that the data are for each individual molecule, and infer which strand in
each double-stranded methylation pattern is the parent or daughter strand, as well as which methylation
event may have given rise to hemimethylated CpG dyads, the most informative type of dyads in the data.
In addition, we can estimate the probabilities of maintenance and de novo methylation events under both
models. Below, we compare the inference for these quantities under the two models, using the FMR1
data, and demonstrate that these inferences are largely robust to differences in the two models.

5.1 Strand-assignment probabilities

We estimate the probability of assigning the top strand to be the parent strand and the bottom the
daughter strand (orientation-specific strand assignment) for each pattern under the two models and
display them in Figure 14 here. These probabilities are consistent under both the IEM and the HMM. In
addition, the orientation-specific strand-assignment probabilities for the four most informative patterns
are all nearly 0 under the HMM, lower than that under the IEM (Supplementary Figure 14). Figures 2
and 3 in the main text report the orientation-nonspecific strand-assignment probabilities, which are max
(p, 1− p), where p is the orientation-specific strand-assignment probability and are therefore nearly 1 for
each of the four most informative patterns. The more extreme estimated probabilities under the HMM
indicates more certainty under this model in assigning the bottom strand in these patterns to be the
parent strand. Reduction in uncertainty under the HMM reflects the additional information the HMM
gains from accounting for the dependence across sites.
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5.2 Inference for hemimethylated CpG dyads

Hemimethylated dyads carry most of the uncertainty in the data and are also most informative about
the parameters of interest. Each hemimethylated dyad could have arisen from a failure of maintenance
event, a de novo event on the parent strand or on the daughter strand. It could also have been a fully- or
unmethylated dyad, but observed as a hemimethylated dyad due to a measurement error. We infer the
probability of each possibility for every hemimethylated dyad in the FMR1 data, using posterior estimates
under each model. These probabilities are also mostly consistent under the two models (Supplementary
Figure 15).

The main differences in these estimated probabilities under the two models are lower estimated prob-
abilities of parent-strand de novo events and higher estimated probabilities of measurement errors under
the HMM than under the IEM (Supplementary Figure 15). We fixed the measurement error rate in the
HMM to be the same as that estimated from the IEM and re-ran the HMM. Estimated probabilities
of parent-strand de novo events from this run were close to those under the IEM, suggesting that the
estimation of the measurement-error rate and that of the parent-strand de novo rate (or the average
association/activity level under the HMM) are inversely correlated. This phenomenon is caused by the
heterogeneity in the FMR1 data across CpG sites [5] and the different approaches the two models take
to dealing with the heterogeneity. Specifically, we identified previously under the IEM four outlier CpG
sites that may have a much higher parent-strand de novo rate than other sites [5]. The HMM, how-
ever, effectively assumes a constant parent- or daughter-strand de novo rate across sites. The excess of
hemimethylated dyads at the outlier CpG sites cannot be fully explained by a single association/activity
rate under the HMM. The parsimonious solution favored by our HMM is then to raise the estimate of
other parameters, such as the measurement error rate, to account for the “extra” hemimethylated dyads.
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Supplementary Figure 14. Posterior orientation-specific strand-assignment probabilities
under the IEM [5] and under the HMM for the FMR1 data. Each inferred value gives the
probability that the top strand was the parent strand and the bottom strand was the daughter strand.
Each dot corresponds to one double-stranded methylation pattern. The four red dots correspond to the
four most informative patterns.
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Supplementary Figure 15. Posterior probabilities for the events that gave rise to the
hemimethylated CpG dyads in the FMR1 data, evaluated under the IEM [5] and the
HMM. Each dot corresponds to a hemimethylated dyad. Blue dots represent hemimethylated dyads at
four CpG sites (sites 10, 14-16), which are identified by the independent-events model to have possibly
large de novo rates on the parent strand. Red dots represent hemimethylated dyads on the four most
informative patterns (patterns 60, 82, 159 and 165; Figure 2 of the main text). Measurement error in
the bottom right panel is due to bisulfite conversion and includes two possibilities: the true state could
be a fully methylated site or an unmethylated site. Most measurement errors in the FMR1 data are of
the former type.
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5.3 Probabilities of maintenance and de novo methylation events

To compare the results of our HMM with our previous analysis in [5], we compute under the HMM
(i) the maintenance methylation probability as π1dµ1d + π3d − π1dµ1dπ3d, accounting for contribu-
tions from both DNMT1 and the DNMT3s; (ii) the daughter-strand de novo methylation probability
as π1dδ1d + π3d − π1dδ1dπ3d, also accounting for contributions from both DNMT1 and the DNMT3s;
and (iii) the parent-strand de novo methylation probability is identical to π3p, due only to the DNMT3s
associated with the parent strand. The resulting estimates are similar to those from the previous analysis
(Supplementary Table 3), providing some reassurance that inference of these rates is largely robust to
modeling assumptions. The discrepancy in the estimated parent-strand de novo event probabilities is due
to a slightly elevated estimate of the measurement error rate c under the HMM compared to [5].

Supplementary Table 3. Estimated mean probabilities of methylation events under the
HMM and the IEM for the FMR1 data.

Mean probability of methylation event The HMM The IEM [5]
Maintenance 0.974 (0.962-0.986) 0.976 (0.969-0.983)
De novo on parent strand 0.02 (0.00-0.05) 0.08 (0.04-0.13)
De novo on daughter strand 0.07 (0.03-0.10) 0.07 (0.04-0.11)

Methylation events considered in this table do not distinguish which methyltransferase was at work.
Numbers are posterior medians with 80% credible intervals given in parentheses.
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