Table S3: Possible new FFAT-like motifs in 18 proteins.

Locus	FFAT like motif	pass or fail?	# sub- optimal elements	=Name of protein. + Comments on motif conservation/structure
		iun:	elements	

New strong FFAT-like motifs meeting all criteria

ike mouns meeting an ci	nonu		
lqeetiTFFDArEsf	~	1.5	=Ahnak2. Reasonably conserved in most distant orthologues (\underline{V} FFDAQE in birds). Predicted to be an unstructured loop.
<pre>sdsevsEFFDSfDqf</pre>		1	=AKAP220. #1: Precisely conserved in all
vssiedDFVTAfEhl		2	orthologues. Predicted to be helical. #2: Precisely conserved in all orthologues. Weakly predicted to be helical.
eessleTFVSAlEsl	~	2	=Ankyrin rpt domain-containing pr-31. Well conserved in all orthologues (mammals only). Predicted to be helical.
lddsgeHFFDArEah	~	1.5	=Rho GEF-12. Well conserved to most distant orthologue (frog: QFFDAQE).Predicted to be in a long unstructured loop.
dseegsEFYENdSnl	~	2	=B lymphocyte antigen CD19. Conserved in all mammals. Predicted in a long unstructured loop.
eefedeDFLSAvEda	>	1.5	=Uncharacterized protein C17orf53. Well conserved in all orthologues. Predicted to be helical.
selettSFFDSdEdd	~	1.5	=Dishevelled 3. Well conserved in vertebrates. Not conserved in flies: $SLFGTES$. Predicted to be in an unstructured loop.
sltsedSFFSAtElf	>	1.5	=C9orf54. Well conserved in mammals. SFVSTAE in birds. F3 \rightarrow A in insects. Predicted to he helical.
tsptseEFFSStTvi	~	2	=Filamin-A-interacting pr-1. Well conserved in all orthologues, DFFSSAT in frog. Predicted to be in a long unstructured loop.
dgssdeEYYDAaDkl		1.5	=FERM and PDZ domain-containing pr-1
gg <mark>ssdeE</mark> YYDAaDkl		2	(FRMPD1). Well conserved. EFFDARD in fish (most distant orthologues). Predicted to be in loop.
knwedeDFYDSdDdt	~	2	=Kanadaptin. Conserved in most eukaryotes <i>e.g.</i> DYYDSDE in <i>Trichoplax</i> , but not in flies & plants: DFYD <u>RTK</u> . Predicted to be in a short loop.
eedaedFFFTArTsf	<	2	=Ras association domain-containing pr-3 (RASSF3). Reasonably conserved, <i>e.g.</i> LFYTART in frog. Weakly predicted to form a helix.
eldredDFCEAaEap		1.5	=Rhophilin-1. Well conserved, e.g. fish
qleredDFFEAtEap	\checkmark	1	DFCEVAE sea squirt: DFFDIVE + flank more acidic. Lies after helix 12 of BRO1 domain.* Absent in Rhpn-2.
			=Solute carrier (SLC)-22 member 15/Flipt.
eseeeeEFYDAdEet	\checkmark	0.5	Conserved to most distant orthologue (lizard: EFFDADE). Weakly predicted to be helical.
g <mark>eddfe</mark> MFY <mark>ET</mark> wEkf		2	=Sodium channel protein type 4/10 subunit
seddfdMFYETwEkf		2	alpha. Well conserved in mammals and some fish, but in other fish $T5 \rightarrow \emptyset$. Not conserved in flies (MYYE <u>IWQ)</u> . Predicted to be helical.
	IqeetiTFFDArEsfIqeetiTFFDArEsfsdsevsEFFDSfDqfvssiedDFVTAfEhleessleTFVSAlEsllddsgeHFFDArEahdseegsEFYENdSnleefedeDFLSAvEdaselettSFFDSdEddsltsedSFFSAtElfdgssdeEYYDAaDklggssdeEYYDAaDklggssdeEYYDAaDkleedaedFFFTArTsfeldredDFCEAaEapqleredDFFEAtEapgeddfeMFYETwEkf	lqeetiTFFDArEsf sdsevsEFFDSfDqf vssiedDFVTAfEhl vssiedDFVTAfEhl lddsgeHFFDArEah lddsgeHFFDArEah dseegsEFYENdSnl eefedeDFLSAvEda selettSFFDSdEdd sltsedSFFSAtElf dgssdeEYYDAaDkl ggssdeEYYDAaDkl ggssdeEYYDAaDkl v eedaedFFFTArTsf qleredDFCEAaEap qleredDFFEAtEap	lqeetiTFFDArEsf ✓ 1.5 sdsevsEFFDSfDqf 1 vssiedDFVTAfEhl ✓ 2 eessleTFVSALEsl ✓ 2 lddsgeHFFDArEah ✓ 1.5 dseegsEFYENdSnl ✓ 2 eefedeDFLSAvEda ✓ 1.5 selettSFFDSdEdd ✓ 1.5 sltsedSFFSAtElf ✓ 1.5 dgssdeEYYDAaDkl ✓ 2 dgssdeEYYDAaDkl ✓ 2 knwedeDFYDSdDdt ✓ 2 eedaedFFFTArTsf ✓ 2 qleredDFCEAaEap ✓ 1.5 qleredDFFEAtEap ✓ 0.5 geddfeMFYETwEkf ✓ 2

SPKAP_HUMAN	lssieeDFLTAsEhl	\checkmark	2	=AKAP110. Perfectly conserved in all orthologues (incl. fish). Weakly predicted to be helical. Well conserved in all orthologues incl. fish. Predicted to be helical.
SSH2_HUMAN	f <mark>stdriDFFS</mark> AlEkf	~	2	=Slingshot homolog 2. Well conserved to birds/fish. F3L in frog. Motif not in fly SSH. Predicted helical.
TACC1_HUMAN	epeedlEYFECsNvp	~	2	=Transforming acidic coiled-coil-containing pr-1. Motif stronger in frogs EFFECTS, but missing in fish orthologues. Predicted to be in a long loop.
THMS1_BOVIN	pl <mark>sqegEFYECeDe</mark> h	\checkmark	2	=Thymocyte-expressed molecule involved in
THMS1_HUMAN	pl <mark>sqegEFYECeDer</mark>		2	selection (THEMIS). Well conserved to most distant orthologue: EFYECAD in fish. E1K in
THMS1_MOUSE	pl <mark>sqegEFYECeDe</mark> h		2	birds. Predicted to be in an unstructured loop.
VPS13A_HUMAN	eddseeEFFDApCsp	./	1.5	=Vps13A / chorein. Conserved in all Vps13A orthologues, <i>e.g.</i> EFYDAPT in frog. Predicted to be in long extended loop. In same position as motif in Vps13C (see above).
VP13C_HUMAN	esesddEYFDAeDge	•	1	=Vps13C. Well conserved even to fungi:
VP13C_MOUSE	esesdeEFFDAeDgd		0	EF <u>V</u> DAVS in <i>S. pombe</i> . Predicted to be in long extended loop. In same position as motif in Vps13A (see above).
ZFY27_HUMAN	eaepdeEFKDAiEet	\checkmark	1.5	=Protrudin. (also called SPG33). Conserved in all orthologues incl. fish. Predicted helical.

Known VAP interactors

GLTP (H. sapiens)	av <mark>s</mark> hlpPFF <mark>D</mark> ClG <mark>s</mark> p	(B & D)	3.5	See text. Conserved in fish, not invertebrates (see Fig 3A). <u>BUT:</u> PFFD in 3/10-helix (helix 2) in crystal structure (1SWX).
Orp3a (A. thaliana)	gqkfapKWF <mark>DEtEe</mark> v	B,C &D	6	See text. Not well conserved, <i>e.g.</i> RWF <u>N</u> LTD in maize.
USP20 (guinea pig)	SpseedEFLSCdSss	<	2	Reasonably conserved in all vertebrates. Weaker motif in closest homologue USP33.
RMD3 (Nematostella. vectensis)	ssddedEFYEApQde	\checkmark	2	=PTPIP51. Reasonably well conserved, <i>e.g.</i> VYFTASS in human (see Figure S3). In unstructured region. Also weaker motif in RMD2

Fail criterion (A): Not located in cytoplasm

A1AG_RABIT	<pre>speqleEFYEAlTcl</pre>	А	2	
A1AG1_HUMAN	tkeqlgEFYEAlDcl	A 2		= alpha-1 acid glycoprotein. Extracellular.
A1AG2_HUMAN	tkeqlgEFYEAlDcl	А	2	
ACCN2_HUMAN	tmdsdlDFFDSySit	А	1.5	=Amiloride-sensitive cation channel 2. Extracellular.
ALMT1_ARATH	lqdfgdEYFEArEkg		2	=Aluminium-activated malate transporter 1/2
ALMT2_ARATH	lq <mark>e</mark> fgdEYFEAtEdg	A		(Arabidopsis). Extracellular.
FA69C_HUMAN	tgdedcNFFDCfSrc	А	2	=C18orf51. Extracellular.
PCDB9_HUMAN			2	=Protocadherin beta-9/10. Extracellular.
PCDBA_HUMAN	naevsySFFDAsEdi	A		
YCF1_OENEH	lkkelkDYFEAqElf	A & D	2.5	=Ycf1 (plastid). (and poorly conserved: <i>e.g.</i> DYF <u>G</u> AQ <u>G</u> in closest orthologue)

Fail criterion (B): occur in helix of known crystal/NMR structure							
AP3M1_HUMAN	sqsvcdYFFEAqEka	В	2	=μ-adaptin 3A. Not as well conserved as surrounding residues, <i>e.g.</i> YYLEAQR in <i>Tribolium</i> . In helix 1 of MU-1 (2VGL)			
KAT1_HUMAN	eviiiePFFDCyEpm	В	2	=Kynurenine aminotransferase I. Fully conserved in vertebrates. However, forms part of internal substrate pocket.			
LCK_HUMAN	lrsvleDFFTAtEgq	В	2	=Lck tyrosine kinase. Absolutely conserved in ALL vertebrate Src-like kinases (\pm F3Y), invertebrates lose 2 nd half: <i>e.g.</i> EFF <u>VMEG</u> in sea urchin. Structure: 1 st half is in helix 13 of kinase domain.			
MAOX_HUMAN	yddfldEFMEAvSsk	В	2	=NADP-dependent malic enzyme. In helix 16 of structure. Also: residue 4 not conserved in fish: EFM <u>K</u> AIT.			
NOM1_HUMAN	timtseDFLDAfEkl	В	2	=Nucleolar MIF4G domain-containing protein 1. In helix 2 of MA3 domain.			
NOP2_SCHPO	svseavEFFEAnEmp	В	1	=ribosomal RNA methyltransferase			
NOP2_YEAST	<mark>spaeamEFFEAnE</mark> ia	В	1.5	(nucleolar protein 2). Well conserved, EFLEANE in human. But, lies in helix 3 of methyltransferase domain.			
S14L6_HUMAN	gi <mark>e</mark> llq <mark>E</mark> FF <mark>S</mark> AlEan	В	2	=Putative SEC14-like protein 6. In helix 7 of conserved Sec14 structure.			
TBAL3_HUMAN	egmeeaEFLEArEd1	В	1.5	=Tubulin alpha chain-like 3. In helix 16 of tubulin alpha-1C domain			
ZBT11_HUMAN	ctqcekSFFEArDlr	В	2	=Zinc finger and BTB domain-containing pr- 11. Well conserved in orthologues: <i>e.g.</i> <u>R</u> FYEAKD in fish. But 2^{nd} half in helix of 7^{th} C2H2 Zn finger.			

Fail criterion (B): occur in helix of known crystal/NMR structure	Fail criterion (B): o	occur in helix	of known c	rystal/NMR structure
---	------------------	-------	----------------	------------	----------------------

Fail criterion (C): core residues (FFD) not well conserved in orthologues

ATG1_ASPOR	ermnfsDFFDCdTit	С	2	=Autophagy-related pr-1 (<i>Aspergillus</i> <i>oryzae</i>). Poor conservation <i>e.g.</i> DFF <u>QNGV</u> in other <i>Aspergillus</i>
ATMIN_HUMAN	idfdieEFF <mark>SAs</mark> Niq	С	2	=ATM/ATR-substrate CHK2-interacting Zn finger pr. Conserved in mammals/birds, but not in distant orthologues, <i>e.g.</i> EFLNATH in fish.
CDR1_HUMAN	dfledpDFLEAiDlr	С	1.5	=Cerebellar degeneration-related antigen 1. Along with 5 DFLED repeats. Not conserved in close orthologues, <i>e.g.</i> DFLEAM <u>N</u> in horse.
CEBPZ_HUMAN	esddeeNFIDAnDde	С	2	=CCAAT/enhancer-binding pr. zeta. Only conserved in mammals. <u>CFKDQEE</u> in birds.
CHCH1_MOUSE	crkeiqDFFDCsSra	С	2	=Coiled-coil-helix-coiled-coil-helix domain- containing pr-1. Very poorly conserved, <i>e.g.</i> <u>GFLDCAA</u> in chimp
DCL2_PHANO	iv <mark>sdveE</mark> FFDAdDgg	С	1	=Dicer-like protein 2 (<i>Phaeospheria</i>). Only conserved in closest orthologues in <i>leptospheria</i> and <i>pyrenophora</i> .
DSEL_HUMAN	teleidSFVDAcEwk	С	2	=Dermatan-sulfate epimerase-like pr. Not well conserved, <i>e.g.</i> SLLDACE in fish.
E41LA_HUMAN	dcnetsFFFEArSkt	С	2	=Band 4.1-like protein 4A. Not well conserved as surrounding residues, <i>e.g.</i> FFF <u>K</u> AP <u>N</u> in fish.

			1	
ERO1A_HUMAN	h <mark>ddssd</mark> NFCEAdDiq	С	2	=Endoplasmic oxidoreductin-1-like pr. Key residues not conserved. QFCD <u>I</u> DD in sea squirt.
FA21A_HUMAN	dgddddDFFSApHsk	С	2	=WASH complex subunit FAM21A/B/C. Not
FA21B_HUMAN	dgddddDFFSApHsk	С	2	conserved in close orthologues; $\underline{N}FF\underline{MP}SS$ in
FA21C_HUMAN	dgddddDFFSApHsk	С	2	rat
FH5_ORYSJ	svdtgeEFYEAeEdw	С	1	=Formin-like protein 5 (rice). Poorly conserved, <i>e.g.</i> EIFSEAE in <i>Arabidospsis</i> <i>lyrata</i> .
FKBP6_HUMAN	feiellDFLDCa <mark>Esd</mark>	С	2	=FK506 binding pr-6. Conserved in mammals, less so in fish: DFLDSGQ. Predicted to be at end of beta strand 7 and in loop following.
GSTA4_HUMAN	gvefdeEFLETkEql	С	2	=Glutathione S-transferase A4-4. Key residue not conserved compared to nearby residues. E <u>M</u> IETRE in frog.
HELB_HUMAN	eedeesVFIDAeElc	С	2	=Helicase B. Better in some mammals (EFVDAEE). But less conserved in fish: EFLDMKE. Motif absent in birds. Weakly predicted to be helical.
HOT_HUMAN	veptdsSFMEAiEfa	С	2	=Hydroxyacid-oxoacid transhydrogenase. Poor conservation compared to surrounding residues. SF <u>KA</u> AID in fish.
IL1B_HUMAN	ifeeepIFFDTwDne	С	2	=Interleukin-1 beta (precursor). Poorly conserved in mammals, <i>e.g.</i> dog has only acidic tract and no other discernible elements.
JMJD4_HUMAN	ssdwlnEFWDAlDvd	С	2	=JmjC domain-containing pr-4. Only 1 st half of motif conserved in invertebrates: <i>e.g.</i> EFWD <u>H</u> RQ in sea urchin.
KSL10_ORYSJ	litvydDFFDCpEis	С	1.5	=Ent-kaurene synthase-like 10 (rice), Poorly conserved, <i>e.g.</i> DFFD <u>GEG</u> in closest homologue also in rice.
LIMK2_BOVIN	afskleDFFEAlSly	C	2	=LIM domain kinase 2. Poorly conserved, <i>e.g.</i> DSFEALS in closest orthologue (horse)
MLCB_DICDI	teaeitEFFEAaDpn	С	0.5	=Myosin-IB light chain (slime mold) Poorly conserved, <i>e.g.</i> EF <u>LA</u> AAD in close orthologue (<i>D. fasciculatum</i>)
MTH7_DROME	maiirdEFFDCdEmi	С	1.5	=Methusaleh-7 (fruit fly). Poorly conserved, <i>e.g.</i> <u>PFLS</u> CDE in close orthologue (<i>D.</i> <i>yakuba</i>)
ORC2_HUMAN	tsdlveEYFEAhSss	С	2	=Origin recognition complex subunit 2. E4 poorly conserved beyond mammals. <i>e.g.</i> Q4 in fish. Weakly predicted to be helical.
NRBF2_HUMAN	eldvdaDFVETsElw	С	2	=Nuclear receptor-binding factor 2. Key residue not conserved: $T5 \rightarrow \underline{K} e.g.$ in mouse.
PK1IP_HUMAN	g <mark>dee</mark> viRFFDCdSlv	С	2	=p21-activated protein kinase-interacting protein 1 (hPIP1). Key residue not conserved: $F2 \rightarrow I e.g.$ in mouse
PKHM3_HUMAN	alevteEFFSTlDsn	С	2	=Pleckstrin homology domain-containing family M member 3. Conserved in mammals, but S4 \rightarrow N in birds. Predicted to be helical.
R51A1_HUMAN	dseddsDFCESeDnd	С	1.5	=RAD51-associated pr-1. Poorly conserved in mammals, <i>e.g.</i> rat has DF <u>D</u> ESEE.
RTL1_HUMAN	dsdhseTFYECpSta	С	1.5	=Retrotransposon-like pr-1 (PEG11) .Poorly conserved, <i>e.g.</i> <u>GFYGYGY</u> in pig

TSYL2_HUMAN	dfmettDYFETtDne	C	2	=Testis-specific Y-encoded-like pr-2. Key residue not conserved: $Y2 \rightarrow \underline{C} e.g.$ in dog.
YG044_BOVIN	pvg <mark>seeE</mark> FYDCpDyy	С	1.5	=Uncharacterized protein ENSP00000370281 homologue. Poorly conserved, <i>e.g.</i> F2 substituted in closest orthologues e.g. F2 \rightarrow <u>L</u> in pig.
YRO7_CAEEL	dsepdqEFYDAqEqe	С	1	=Uncharacterized protein R07G3.7 (<i>C. elegans</i>). Poorly conserved, <i>e.g.</i> <u>AFLEAKK</u> in close orthologue in <i>C. briggsae</i>
Fail criterion (D): m	ore than 2 suboptimal el	ements	in moti	<u>f</u>
COG4_CAEEL	mtmqdvEYYEAhDpf	D &C	3	=Conserved Oligomeric Golgi component 4 (<i>C. elegans</i>). Conserved in genus, but not in related <i>Brugia</i> : <u>AD</u> FEAED
CQ072_HUMAN	dvppasDYYDAeS11	л	2.5	=C17orf72. Conserved in mammals but not
CQ072_MOUSE	dvppasDYYDAeSlp	D	3.5	fish orthologues, $e.g. E\underline{H}YE\underline{V}E\underline{R}$.
HCYA_ENTDO	rlladsDYYDAwTdn	D	3.5	=Hemocyanin A-type (Octopus). Not well
HCYG_ENTDO	rlladsDYYDAwTdn	&C	5.5	conserved, e.g. <u>NYYYVWR</u> in Aplysia.
MCP_CAVPO	<mark>sd</mark> vqvfEYFEAvTys	D &C	3	=Membrane cofactor precursor (<i>Cavia</i> porcellus). Not well conserved, e.g. <u>QYREAVI</u> in Chinese hamster.
MFH1_SCHPO	ngy <mark>svdE</mark> YFDAn <mark>Ds</mark> n	D &C	2.5	=ATP-dependent DNA helicase (<i>S. pombe</i>). Very poorly conserved, EF <u>MNRNV</u> in <i>S. japonicus</i> .
MRT4_CANGA	tlDtvkEYFEAySrl	D &C	3	=mRNA turnover protein 4 (<i>Candida</i>). Poorly conserved, EYF <u>KS</u> Y <u>V</u> in <i>S.</i> <i>cerevisiae</i> .
ORC2_MOUSE	asdlveEYFEAhSss		2.5	=Origin recognition complex subunit 2. E4
ORC2_RAT	ag <mark>dlveE</mark> YFEAh <mark>Sss</mark>	D	2.5	poorly conserved beyond mammals. Q4
ORC2_XENLA	asnlvEEYFEAhSss		3	found in fish. Weakly predicted to be helical
RAD2_YEAST	h <mark>eknyvEFYDAeS</mark> il	D &C	2.5	=DNA repair protein RAD2 (<i>S. cerevisiae</i>). Poorly conserved compared to adjacent residues, <i>e.g.</i> E <u>CYMQ</u> DD in <i>C. tropicalis</i> .
SLX1_BOTFB	keqelvDYFDAdEfh	D &C	2.5	=structure-specific endonuclease subunit slx1 (noble rot fungus). Very poorly conserved – only in one species.
WIT2_ARATH	eeiireDYFEAlSsr	D &C	2.5	=WPP dominteracting tail-anchored pr-2 (<i>Arabidopsis</i>). Poorly conserved, <i>e.g.</i> E <u>HG</u> EAVS in <i>A. lyrata</i>

New FFAT-like motifs (and flanking residues) from two groups of candidate proteins (1) human proteins containing motifs with 2 or less suboptimal elements (column 4, see Table S3), and (2) proteins of any species with motifs among the 127 simple variants of FFAT (see Table S1) were assessed by four criteria:

3

japonicus.

=uncharacterized beta-glucosidase (S.

pombe). Poorly conserved, EWYDPDA in S.

(A) location in cytoplasm;

YEOB SCHPO

(B) known not to form a helix in published crystallographic/NMR structures;

D

&C

(C) specific conservation across evolution of key FFAT residues compared to adjacent residues in orthologues of the protein. Poorly conserved residues in orthologues are underlined. Where residues in evolutionary distant orthologues fit FFAT better, they are in bold;

(D) \leq 2.0 sub-optimal elements, calculated as in Table S2.

aattdyEYYDAdTpt

21 motifs passed all four criteria; these appear in a section at the top bounded with red tram lines, and are marked with a tick in column 3. Three of these are already referred to in the text: AKAP110, AKAP220 and protrudin, leaving 18 new FFAT-like motifs.

A second short section of the table shows the FFAT-like motifs from known VAP interactors GLTP, Orp3a, USP20 and RMD3 analyzed in the same manner. All other motifs failed one or more of the criteria, and are shown grouped according to the criterion they fail. Alternative names and information on the reasons for failing criteria are given for each protein.