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S 1 “Lowest Unique Bid” and “Highest Unique Bid” Auc-
tions

S 1.1 Description of the auction

Lowest Unique Bid (LUB) auctions are special on-line auctions which have reached a con-

siderable success during last years. Their peculiarity consists in the fact that they are reverse

auctions: rather than the bidder with the highest bid (as in the case of traditional auctions), the

winner is the person who makes the LUB (see Figure 1a in the main text). The rules of a LUB

auction are very simple. At the beginning of each auction, the auctioneers put up for auction a

good of value V . After the beginning of the auction and for a certain period of time (in general

of order of weeks), agents participate to the auction by making bids. The natural unit of the

auction is one hundredth of dollars, euros, etc (i.e., the currency depends on the country where
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Figure S1: Cumulative distribution of the relative return (B × c) /V for the auctioneers. For
www.uniquebidhomes.com data set (black line) the 95% of the auctions are in the gray
region of positive return, where the relative return (T × c) /V > 1. On average, the relative
return of the auctioneers is 2.2. For www.bidmadness.com.au data set (red line) the 72%
of the auctions have produced a positive relative return and on average the relative return is 1.6.

the auction is hosted). Bids may be any amount (in cents) between one cent and a maximal bid

amount M (generally lower than ten hundreds of cents). Sometimes, the value of M is not fixed,

but the bid space is anyway naturally bounded since none of the agents wants to bid more than

V . The value of V depends on the auction, but generally its order of magnitude is of thousands

of hundreds of cents. Making a bid costs a fee c (typically from one hundred to ten hundreds

cents). After each bid b, the agent receives an automatic message, from the web site hosting

the auction, saying whether that bid was the winning bid (i.e., the bid is the LUB) or not. The
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agent is constantly informed about the status of her bids (i.e., whether one of them becomes

the LUB or is not longer the LUB). However, each agent knows only what she has bid, without

any information on which values the other agents have bid. In general, there is no restriction

for the number of bids that the same agent may place. When the time dedicated to the auction

expires, the winner is the agent who made the LUB and can therefore purchase the good for

the value of her winning bid. If at the close of the auction a single lowest unique bid does not

exist, the successful bid becomes the lowest one made by only two agents and the winner is the

one who has bid first on such value. In the case in which also a bid made by only two agents

does not exists, then the winning bid becomes the lowest one made by only three agents and so

on. Again in these situations, the winner is the agent who has first placed a bid on the winning

value. In our data sets however, we always observe that the winning bid is an unmatched bid.

There are several slight variations of this kind of auctions. Very often, the end of the auction is

not determined by an expiration time, but by a minimum required number of bids, a priori fixed

by the auctioneers. In other variations called Highest Unique Bid (HUB) auctions, the winning

bid is the unique one closest to M .

Independently on the type of auctions, this kind of auctions are particularly profitable for both

the auctioneers and the winners of the auctions. Figure 5 of the main text and Figure S1 clearly

show that there are only few exceptions in which auctioneers or winners have lost money, but

in the majority of the auctions their returns are positive.
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Data set Tot. Auctions Tot. Agents Tot. Bids 〈M〉 〈c〉 〈N〉 〈B〉
UBH 189 3 740 55 041 362 437 50 6
LB 55 445 3 740 1 284 478 13 6
BM 336 3 719 127 275 504 174 40 14

Table S1: Summary table of the data sets analyzed in this paper. We report, from left to right,
the name of the data set, the total number of auctions, the total number of different agents, the
total number of bids, the average value of the maximal bid value, the average amount of the fee,
the average number of agents involved in an auction and the average number of bids made by
a single agent in a single auction. The unit of the bid values is one hundredth of an Australian
dollar.

S 1.2 Description of the data sets

We collected data from the web sites www.uniquebidhomes.com (UBH),

www.lowbids.com.au (LB) both hosting LUB auctions and

from www.bidmadness.com.au (BM) organizing HUB auctions. Data regard all auctions

organized during 2007, 2008, 2009 and part of 2010 by these web sites. We collected detailed

information concerning the auctions: the value of the goods, the cost of the fee, the maximum

bid amount, the duration of the auction or eventually the required number of bids. We report in

Table S1 some of these quantities calculated for our data sets. We were able also to keep track,

for all data sets, of each single bid, getting information about its value, the time when it was

made and the agent who made it. Data sets were anonymised and can be downloaded at the

page filrad.homelinux.org. In the following, we focus our analysis mainly on the data

sets UBH and BM since, given their size, allow to perform much better statistics.
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S 1.3 Analysis

Figure S2: UBH data set. (a) In the top panel, the time series of bid values performed by agent
u = 1632 in auction a = 19 is shown. In particular we zoom into a region where “abnormal”
movements are present. In the bottom panel, we plot the time series of the length of her jumps
dt = |bt+1 − bt|. (b) Same plots as those appearing in panel a, but for the cleaned version of the
time series. The indices a and u refer to the anonymised version of the UBH data set.

Fixed an auction a and an agent u, we consider the temporal series of her bids, whose total

number is denoted by Ta,u. This series is basically a list of integers b1, b2, . . . , bT , where we have

suppressed the indices a and u for shortness of notation. Their value is defined over the interval

[1, M ]. All bs are different each other since no agent bids on a certain value more than once. A

typical example of these time series is reported in the top panel of Figure S2a. We calculate the

gap or difference between subsequent bid values and indicate it with dt = |bt+1 − bt|. Given a

list of T bid values we can in fact extract a list of T − 1 differences between consecutive bids.

In the bottom panel of Figure S2a, we plot the time series dt for the same agent whose bid time

series is plotted in the upper panel.
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S 1.4 Cleaning the data sets

Generally, more “professional” agents perform random searches followed by systematic cov-

erages of intervals. A typical example is shown in the inset of the upper panel of Figure S2a.

Here a zoom of the time series appearing in the main plot is reported. Systematic coverages

are performed by selecting a range of bid values and then placing a bid on each single value in

that interval. This is an opportunity offered by the web site hosting auctions. Each bid in this

case is characterized by the same time stamp. Such occurrence is likely for agents who make

a significant number of bids, but becomes less relevant for agents who invest relatively small

amount of money. We cleaned data by removing all pieces of the time series corresponding to

this “abnormal” behavior. It should be remarked that the gaps between consecutive bids which

can be measured in these regions are in the majority of the cases equal to one. Including these

regions will influence only gaps equal to unity by overestimating their presence. We decided

to remove such systematic coverages in order to focus our attention only on “normal” bidding

strategies. The result, after the cleaning procedure of time series shown in Figure S2a, is re-

ported in the upper panel of Figure S2b. The gaps between consecutive bids in the cleaned time

series are reported in the bottom panel of Figure S2b.

As additional information, in Figure S3, we measure the number of agents N (ρ) performing a

ratio ρ of bids made using a normal strategy (i.e., after removing systematic coverages) and the

total number of bids placed.

In the following analysis, we consider only cleaned time series, where systematic coverages

have been deleted.
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Figure S3: Number of agents N (ρ) performing “normal” search strategies at rate ρ.
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S 1.5 Statistics of the length of the jumps

Figure S4: (a) Probability distribution function P (d) calculated over all agents and auctions in
the data sets UBH (orange circles), LB (gray squares) and BM (turquoise diamonds). Dashed
lines stand for best power-law fits (least square). We find α = 1.54(2) [black], α = 1.54(3)
[red] and α = 1.54(5) [blue]. (b) Same as in panel a, but for cleaned time series. Dashed lines
have slopes α = 1.49(2) [black], α = 1.52(2) [red] and α = 1.51(5) [blue]. The data of this
figure also reported in Figure 3A of the main text. Curves calculated for LB and BM data sets
have been vertically shifted for clarity.

We measure the probability distribution function (pdf) P (d) of the difference between subse-

quent bids made by single agents in single auctions. Global (i.e., aggregated over all agents and

auctions) pdfs of both data sets are plotted in Figure S4. For agents with a sufficient number of

bids in the same auction, we also compute individual pdfs. Some examples are reported in the

various panels of Figures S5, S6 and S7 for UBH data set and in Figures S8, S9 and S10 for

BM data set. In each panel of these figures, we explicitly indicate the id of the auction a and

the id of the agent u as they appear in our anonymised version of the data sets. In all cases, we

find a behavior compatible with

P (d) ∼ d−α . (S1)

The search strategy adopted by agents is therefore given by Lévy flights with characteristic
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exponent α. The best fits with power-laws are plotted in Figures S5, S6, S7, S8, S9 and S10

with black dashed lines and the value of α, plus the associated error, corresponding to the best

fit is reported at the top of each panel.

In order to calculate a pdf, we divide the range of possible values of d in bins equally spaced

on the logarithmic scale. We then drawn the pdf by associating to each bin the number of ds

falling in that bin divided by the number of integers that could enter in the bin (this because

d can assume only integer values). Everything is then normalized by simply dividing by the

total number of points. We compute the best power-law exponent by performing a linear least

square fit in double logarithmic scale. Despite the binning procedure may introduce a certain

amount of arbitrariness in the evaluation of the pdfs, we checked the consistency of our results

by varying the number of bins. Moreover, we additionally make use of a different fit method

(maximum likelihood) about which we will discuss later.
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Figure S5: UBH data set. Probability distribution function P (d) measured for agent u in auc-
tion a. We show several P (d)s for different pairs u and a. Dashed lines denote the best power-
law fit (least square) P (d) ∼ d−α obtained for the data.

10



Figure S6: UBH data set. Same as Figure S5.
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Figure S7: UBH data set. Same as Figure S5 and S6.
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Figure S8: BM data set. Probability distribution function P (d) measured for agent u in auction
a. We show several P (d)s for different pairs u and a.
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Figure S9: BM data set. Same as Figure S8.
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Figure S10: BM data set. Same as Figure S8 and S9.
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S 1.6 Independence of the direction of the jumps

Figure S11: (a) UBH data set. Probability distribution function P (d) calculated over all agents
and auctions. We have separated positive from negative variations. The measured decay expo-
nents of the best fits with power-laws (dashed lines) are α = 1.53(2) [black] and α = 1.54(2)
[red], respectively. The curve corresponding to negative variation has been vertically shifted
for clarity. This figure appears also in Fig. 3B of the main text. (b) BM data set. here the best
power-law fit are α = 1.61(8) [black] and α = 1.45(4) [red].

Since the rules of the auction naturally bring agents to move towards low bid values, it is impor-

tant to stress any eventual difference between the statistics associated with the length of gaps

between consecutive bid values. We aggregated data from all agents and auctions and separate

positive (i.e., bt+1 > bt) from negative (i.e., bt+1 < bt) variations. In Figure S11 the pdfs of pos-

itive and negative variations are plotted together. As one may notice, there is not a significant

difference between them and both show a clear power-law decay with compatible exponents.
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S 1.7 Independence of the agents’ activity

Figure S12: (a) UBH data set. Probability distribution function P (T ) of the number of bids
T performed by single agents in single auctions. We calculate P (T ) on the original data set
(orange circles) and on the cleaned version of the same data set (gray squares). In both cases,
the distribution scales power-like with a decay exponent equal to 2.2(2). (b) BM data set. The
exponent of the best fit is 2.0(4) [dashed line].

The evidence of Lévy flights for single agents in single auctions can be directly verified only

for agents with a sufficient number of bids T in the same auction. For values of T smaller

than 50 is practically impossible to construct the histogram P (d) and therefore no exponent

can be measured. Unfortunately, this situation is very frequent in our data sets. We measure

the number of bids made each agent in each auction and plot the pdf of the number of bids in a

single auction in Figure S12. The level of activity is quite heterogeneous and decays power-like

with an exponent close to 2.2. For completeness, we measure the same pdf for both original

and cleaned data sets without noticing appreciable differences.

We divide the population in different ranges of activity. We aggregate the length of the jumps

performed by all agents in a given bin and measure the resulting P (d). The results of this

analysis are reported in Figure S13. Independently of the activity level, the aggregated pdfs
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Figure S13: (a) UBH data set. Probability distribution function P (d) of the length d of the
jumps performed by agents in the bid space. All auctions have been aggregated together. Dif-
ferent curves correspond to agents with different levels of activity. Their activity is measured
as the number of bids made in the same auction. We divide the population into four subsets:
T < 10 (orange circles), 10 ≤ T < 40 (gray squares), 40 ≤ T < 200 (blue diamonds) and
T ≥ 200 (violet triangles). Dashed lines represent the best power-law fits. The value of the
measured exponents are: α = 1.55(2) (black), α = 1.62(4) (red), α = 1.53(2) (blue) and
α = 1.54(3) (violet). Curves have been vertically shifted for clarity. This figure is also reported
in Fig. 3C of the main text. (b) BM data set. Best power-law fits (dashed lines) have exponents:
α = 1.43(4) (black), α = 1.44(5) (red), α = 1.7(1) (blue) and α = 1.7(1) (violet).

decay power-like and have similar exponents α. This means that the presence of Lévy flights is

typical for every agent independently of how many bids the agent has made.
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S 1.8 Independence of the bidding time

Figure S14: (a) UBH data set. Probability distribution function P (d) of the length d of the
flights performed by agents in the bid space. All auctions have been aggregated together. Dif-
ferent curves correspond to different periods of activity for agents: orange circles correspond to
the initial guess made by agents; bids gaps with t ≤ 2 (gray squares) and t ≤ 5 (blue diamonds)
aggregate the data corresponding to the early activity of agents; t ≥ T − 2 (violet up triangles)
and t = T − 1 (green down triangles) corresponds to the jumps made by agents at the end of
their own activity. Dashed lines have been obtained as best power-law fits with data points. The
value of the measured exponents are: α = 1.55(4) (black), α = 1.54(3) (red), α = 1.59(4)
(blue), α = 1.49(5) (violet) and α = 1.54(6) (green). Curves have been vertically shifted for
clarity. This figure is also reported in Fig. 2d of the main text. (b) BM data set. Best power-law
fits (dashed lines) have exponents: α = 1.3(1) (black), α = 1.50(5) (red), α = 1.47(4) (blue),
α = 1.43(6) (violet) and α = 1.35(6) (green). For the initial bid b1, we compute the length of
the jump as d = M − b1 + 1, with M being the maximal bid value in the HUB auctions.

Another fundamental point is to understand whether the Lévy flight strategy is emergent or a

priori given. We test these hypotheses by measuring the pdfs P (d) corresponding to a certain

range during the activity of the agents. The results are reported in Figure S14. We consider

ranges of activity periods corresponding to t ≤ 2, t ≤ 5, t ≥ T −2 and t = T −1. Additionally,

we consider the distribution of the initial bid values (i.e., the first bid made by all agents in

all auctions). In every case, we are able to fit the curves with power-laws and the resulting
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exponents are compatible each other. We can effectively conclude that the strategy to adopt a

Lévy flight is not an emergent property induced by the evolution of the auction. Instead the

strategy to follow Lévy flights is intrinsically present, in each agent, during the whole duration

of the auction.
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S 1.9 Independence between jumps

Figure S15: UBH data set. Number of agents N (r) whose bid gaps at position t and t + τ have
Pearson’s correlation coefficient equal to r. Black curves are measured on real data, while the
red ones are calculated over a reshuffled version of the same data. The reshuffling is made by
randomly exchange pairs of entries in the time series of the time gaps with the only prescription
that the sum of them is not lower than one and not larger than M . We consider different values
of τ . In each plot only agents with at least 10 + τ bids in the same auction are considered.

We further study the correlations between jumps. Given an agent and an auction, we consider

the list of all her jumps d1, d2, . . . , dB−1 and calculate the Pearson’s correlation coefficient

rτ =
〈(dt − µt) (dt+τ − µt+τ )〉

σt σt+τ

, (S2)
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Figure S16: Same as those appearing in Figure S15 but for BM data set.

where 〈·〉 stands for the average over the entire time series (i.e., over all values of t from 1 to

T − 1 − τ ). µt = 〈dt〉 and µt+τ = 〈dt+τ 〉 are the average values of the bid gaps along the

time series, while σt =
√
〈d2

t 〉 − 〈dt〉 and σt+τ =
√
〈d2

t+τ 〉 − 〈dt+τ 〉 are the respective standard

deviations. We measure such coefficient for every agent who has performed at least 10 + τ bids

in the same auction and show the number of agents N (r) with given value of r in Figures S15

and S16. The same quantity is also calculated for a randomized version of the time series,

where bid gaps are randomly reshuffled with the only constraint that their partial sum cannot

never be smaller than one and larger than M . We consider several values of τ . As one can
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clearly notice, subsequent gaps (i.e., τ = 1) are slightly correlated. Such correlation, becomes

negligible when τ grows and already for τ = 2, N (r) is negligible. For τ = 5 and τ = 10, the

curves corresponding to the original time series and those obtained over randomly reshuffled

time series are almost identical.

Such results show that agents perform almost uncorrelated Lévy flights. Once an agent makes

a jump, the length of this jump is slightly correlated with the one of the jump made before.

However, after few jumps there is not longer memory of what happened before. In good ap-

proximation, the walk of the agent in the bid space can be therefore modeled as the one followed

by a random walker performing uncorrelated Lévy flights.
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S 1.10 Testing the model
S 1.10.1 Maximum likelihood fit and Goodness of fit

In this section, we compute the level of significance of our model for the description of real

time series. Suppose that a time series of T bid values b1, b2, . . . , bT describes a realization of

our model. Fixed the exponent α, the bound M of the lattice and the position bt−1 at stage t−1,

the probability that the random walker jumps at bt at stage t is given by the transition matrix of

Eq. (6) of the main text. The probability or likelihood that the whole sequence was extracted

from our model is

p (b1, b2, . . . , bT |α) = (Qα)0,b1
(Qα)b1,b2

(Qα)b2,b3
· · · (Qα)bT−1,bT

.

The value of α that maximizes the former equation represents the most likely exponent of our

model that could have generated our particular sequence. In order to find its maximum, it is

convenient to take the logarithm of both sides and write the log-likelihood

L (b1, b2, . . . , bT |α) =
T∑

t=1

ln
[
(Qα)bt−1,bt

]
= −α

T∑
t=1

ln |bt − bt−1|−
T∑

t=1

ln
[
mbt−1 (α)

]
, (S3)

where we set b0 = 0. The value α′ at which the maximum of Eq. (S3) occurs can be estimated

numerically.

α′ is the best exponent fitting the data in the hypothesis that they were produced according to

our model. The significance level of the model for the description of the data can be calculated

by estimating the p-value associated with our measurement. In this respect, we first compute

the distance between the theoretical distribution of the jump lengths

Pα′ (d) =

∑
i,j

(Qα′)ij δ (d− |i− j|)

 ∑
d

∑
i,j

(Qα′)ij δ (d− |i− j|)

−1

and the one obtained from our data P (d) by calculating

ηdata = max
t

|Pα′ (≥ dt)− P (≥ dt)| ,
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where P (≥ d) =
∑

q≥d P (q) is the cumulative distribution of the jump lengths. Notice that the

distance between cumulative distributions is the same as the one adopted in the Kolmogorov-

Smirnov test. We then generate artificial time series of length T from our model with exponent

α′ and compute their distance η with respect to the theoretical distribution. The p-value is fi-

nally determined by the relative number of times in which we observe η ≥ ηdata.

Synthetic time series generated according to our model can be additionally used for the determi-

nation of the error associated to the estimation of α′. The error associated to α′ is the standard

deviation of the best exponents estimated, with maximum likelihood, for the synthetic data sets.

Figure S17: We consider only agents who have performed at least T = 50 bids in a single
auction in UBH data set and those with at least T = 100 in the BM data set. Our data set offers
39 agents that satisfy this constraint in the UBH data set and 52 in the BM data set. Panels a
(UBH) and b (BM) show the scatter plot α′ versus α for the best power-law exponents estimated
by using maximum likelihood and least square methods, respectively. The agreement between
the two measurements is good as demonstrated by the fact that the majority of the points fall on
the diagonal (red line).

A graphical comparison between the exponents α (least square method) and α′ (maximum

likelihood method) is presented in Figure S17. In general, the two methods produce consistent

results. For completeness, we list the results obtained in Tables S2 and S3.
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a u α α′ p

1 23 1.6(1) 1.5(1) 0.00
1 81 1.2(1) 1.3(1) 0.17

100 1715 1.6(2) 1.1(1) 0.01
100 81 1.5(2) 1.3(1) 0.00
104 3093 1.7(3) 1.1(1) 0.14
108 134 1.7(1) 1.3(1) 0.02
14 134 1.2(1) 1.1(1) 0.03
14 81 1.9(2) 1.3(1) 0.00
15 423 1.6(4) 1.3(1) 0.3
179 3663 1.8(1) 1.4(1) 0.17
19 1 1.3(1) 1.3(1) 0.28
19 1313 1.2(1) 1.2(1) 0.14
19 134 1.2(1) 1.1(1) 0.00
19 1433 1.1(1) 1.0(1) 0.06
19 1448 1.4(1) 1.2(1) 0.01
19 1558 1.1(1) 1.2(1) 0.63
19 1576 1.0(1) 0.9(1) 0.35
19 1601 1.4(1) 1.3(1) 0.01
19 1632 1.4(1) 1.2(1) 0.01
19 1640 1.3(1) 1.2(1) 0.00

a u α α′ p

19 1642 1.3(1) 1.2(1) 0.13
19 1644 1.4(1) 1.2(1) 0.00
19 1645 1.4(1) 1.2(1) 0.00
19 3 1.2(1) 1.3(1) 0.9
19 363 1.2(1) 1.1(1) 0.02
19 434 1.1(1) 1.2(1) 0.35
19 438 1.5(1) 1.0(1) 0.02
20 617 1.6(2) 1.4(1) 0.01
22 134 1.2(1) 1.3(1) 0.95
44 433 1.1(1) 1.6(1) 0.07
46 2003 1.3(3) 1.5(1) 0.02
5 128 1.6(1) 1.4(1) 0.00
62 2392 1.3(3) 1.4(1) 0.43
71 324 1.6(2) 1.4(1) 0.00
73 1640 1.5(2) 1.4(1) 0.18
73 1715 1.5(1) 1.2(1) 0.34
79 134 1.6(2) 1.3(1) 0.11
91 1715 1.5(2) 1.3(1) 0.32
97 1715 1.6(2) 1.3(1) 0.09

Table S2: UBH data set. Each row corresponds to one of the 39 agents who have bid at least 50
times in the same auction. We report the id of the auction a, the id of the agent u, the exponent
α calculated with the least square method, the exponent α′ calculated with the maximum likeli-
hood method and the p-value. Entries with low p-values are highlighted in gray. In the 77% of
the cases we find a p-value larger than 0, which indicates that our model well describe the time
series.

The p-values show also a general goodness of our model for the description of the data.

Sometimes however, the value of p is very small. This could be explained in a simple manner. In

Figure S18 we plot for example the statistical test performed over the same time series appearing

in Figure S2. In that auction, the maximum bid amount was M = 13 000. However, this value

of M does not correspond to the “effective” bound felt by the agent. This bound seems to

be around M ∼ 2 000 as the sudden drop of P (≥ d) would suggest. By setting M = 2 200

and running again the statistical test, as we did in Figure S18b, we see clearly that the curve

predicted by our model and the one measured on real data are in very good agreement.
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a u α α′ p

11 28 1.1(2) 1.3(1) 0.09
13 48 1.5(1) 1.3(1) 0
13 28 1.3(1) 1.4(1) 0.04
15 11 1.8(3) 1.4(1) 0.05
15 36 2.0(1) 1.5(1) 0.03
28 28 1.4(1) 1.4(1) 0.58
32 150 1.2(6) 1.0(1) 0
39 48 1.3(1) 1.3(1) 0
47 28 1.1(1) 1.3(1) 0.48
50 48 1.5(1) 1.3(1) 0.27
52 28 1.2(2) 1.4(1) 0.01
55 15 1.3(1) 1.3(1) 0.38
55 150 1.2(3) 1.1(1) 0
61 213 1.3(1) 1.2(1) 0.62
61 36 1.3(1) 1.2(1) 0.5
62 136 1.6(1) 1.5(1) 0.2
67 98 1.0(1) 1.1(1) 0.15
69 28 1.5(1) 1.4(1) 0.39
82 36 1.2(2) 1.2(1) 0
89 72 1.4(1) 1.3(1) 0.15
89 48 1.5(1) 1.3(1) 0.2
89 28 1.2(1) 1.3(1) 0.16
91 15 1.4(1) 1.4(1) 0.65
92 36 1.8(2) 1.3(1) 0
92 28 1.3(1) 1.3(1) 0.42
94 48 1.6(1) 1.3(1) 0

a u α α′ p

94 98 1.5(2) 1.0(1) 0
94 15 1.5(1) 1.5(1) 0.15
105 28 1.5(1) 1.5(1) 0.45
110 28 1.2(1) 1.4(1) 0.18
116 15 1.2(1) 1.3(1) 0.04
122 15 1.5(1) 1.4(1) 0.78
125 28 1.4(1) 1.4(1) 0.88
133 98 1.7(1) 1.2(1) 0.02
162 15 1.2(1) 1.3(1) 0.48
181 15 1.2(2) 1.1(1) 0.1
197 15 1.2(2) 1.2(1) 0.58
201 15 1.3(2) 1.1(1) 0
262 150 1.3(8) 1.8(1) 0.04
264 1428 1.5(2) 1.7(1) 0.12
269 122 1.6(2) 1.7(1) 0.02
279 550 1.5(2) 1.5(1) 0.22
293 3503 1.5(1) 1.5(1) 0
300 550 1.5(1) 1.6(1) 0.41
300 150 1.7(1) 1.7(1) 0.17
306 150 1.5(1) 1.4(1) 0
317 150 1.8(2) 1.6(1) 0.22
318 150 1.5(2) 1.4(1) 0.04
327 1503 1.3(1) 1.4(1) 0.19
327 150 1.6(1) 1.6(1) 0.25
331 150 1.6(2) 1.6(1) 0.29
332 1574 1.6(2) 1.9(1) 0.15

Table S3: BM data set. Each row corresponds to one of the 52 agents who have bid at least 100
times in the same auction. We report the id of the auction a, the id of the agent u, the exponent
α calculated with the least square method, the exponent α′ calculated with the maximum likeli-
hood method and the p-value. Entries with low p-values are highlighted in gray. In the 79% of
the cases we find a p-value larger than 0, which indicates that our model well describe the time
series.

27



Figure S18: Example of the maximum likelihood method for the determination of the exponent
α′ of the Lévy flight. We consider the time series of agent 1632 in auction 19 of the UBH
data set (the same appearing in Figure S2). In panel a, we set M = 13 000 which is the value
of the maximum bid amount that was allowed in the auction. The best exponent α′ = 1.2(1)
is obtained by looking at the maximum of the log-likelihood as it is shown in the inset. The
comparison between the cumulative distribution of the jump lengths expected from the model
(red line) and the one calculated over the time series (black) do not well agree. It seems that the
“effective” bound is smaller than the real one. In panel b, we set M = 2 200 and consider only
bid values smaller than this bound. On the new time series, we perform a maximum likelihood
fit finding α′ = 1.1(1). The theoretical expectation (red line) and the one obtained from the
time series (black line) are now very similar yielding a p-value equal to 0.1.
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S 1.10.2 Another maximum likelihood fit

Since the upper-bound M is agent dependent, we perform an additional analysis where the

upper bound M is not directly taken from the data, but used as a parameter for the fit. For each

agent, we let the parameter M vary only in the range for which at least the 90% of the bids

values are below M . Indicate with T̃ the number of bids below the threshold M . We then find

α′ identifying the maximum of the likelihood function and calculate the p-value as described

so far. We consider the best value of M as the one which maximizes the product T̃ × p.

Figures S19, S20 and S21 report the best fit for the same agents analyzed in Figures S5, S6

and S7 for UBH data set, while Figures S22, S23 and S24 are the analogous of Figures S8, S9

and S10 for BM data set. For completeness, we report in Tables S4 and S5 the results obtained

with the maximum likelihood fit where M is used as parameter of the fit. The best exponents

α′ are still consistent with those reported in Tables S2 and S3, but the p-values result much

increased.
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a u α α′ M p

1 23 1.6(1) 1.4(1) 490 0.00
1 81 1.2(1) 1.2(1) 2220 0.26

100 1715 1.6(2) 1.0(1) 150 0.15
100 81 1.5(2) 1.3(1) 480 0.01
104 3093 1.7(3) 1.0(1) 70 0.51
108 134 1.7(1) 1.3(1) 70 0.09
14 134 1.2(1) 1.1(1) 530 0.40
14 81 1.9(2) 1.3(1) 870 0.01
15 423 1.6(4) 1.2(1) 120 0.53
179 3663 1.8(1) 1.3(2) 70 0.35
19 1 1.3(1) 1.3(1) 3050 0.29
19 1313 1.2(1) 1.1(1) 1650 0.50
19 134 1.2(1) 1.0(1) 2320 0.19
19 1433 1.1(1) 0.9(1) 1840 0.99
19 1448 1.4(1) 1.1(1) 2480 0.08
19 1558 1.1(1) 1.2(1) 2290 0.93
19 1576 1.0(1) 0.9(1) 9580 0.34
19 1601 1.4(1) 1.2(1) 480 0.09
19 1632 1.4(1) 1.1(1) 2210 0.13
19 1640 1.3(1) 1.2(1) 3080 0.00

a u α α′ M p

19 1642 1.3(1) 1.2(1) 3200 0.45
19 1644 1.4(1) 1.2(1) 3010 0.00
19 1645 1.4(1) 1.1(1) 1750 0.03
19 3 1.2(1) 1.3(1) 3310 0.91
19 363 1.2(1) 0.9(1) 890 0.20
19 434 1.1(1) 1.1(1) 1750 0.77
19 438 1.5(1) 0.9(1) 2120 0.43
20 617 1.6(2) 1.3(1) 200 0.09
22 134 1.2(1) 1.3(1) 1000 0.96
44 433 1.1(1) 1.6(1) 3340 0.08
46 2003 1.3(3) 1.4(1) 110 0.03
5 128 1.6(1) 1.4(1) 1830 0.01
62 2392 1.3(3) 1.3(1) 130 0.52
71 324 1.6(2) 1.4(1) 860 0.00
73 1640 1.5(2) 1.4(1) 1920 0.27
73 1715 1.5(1) 1.2(1) 140 0.68
79 134 1.6(2) 1.3(1) 120 0.21
91 1715 1.5(2) 1.3(1) 70 0.67
97 1715 1.6(2) 1.2(1) 80 0.19

Table S4: UBH data set. Each row corresponds to one of the 39 agents who have bid at least 50
times in the same auction. We report the id of the auction a, the id of the agent u, the exponent
α calculated with the least square method, the exponent α′ calculated with the maximum likeli-
hood method, the best value of the upper bound M and the p-value. Entries with low p-values
are highlighted in gray. In the 90% of the cases we find a p-value larger than 0, which indicates
that our model well describe the time series.
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Figure S19: UBH data set. Cumulative distribution function P (≥ d) measured for agent u in
auction a (red full line) compared with the theoretical distribution (black dashed line). We show
several P (≥ d)s for different pairs u and a. We report also the best value of the upper bound
M and the p-value associated with our fit.
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Figure S20: UBH data set. Same as Figure S19.
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Figure S21: UBH data set. Same as Figure S19 and S20.
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Figure S22: BM data set. Cumulative distribution function P (≥ d) measured for agent u in
auction a (red full line) compared with the theoretical distribution (black dashed line). We
show several P (≥ d)s for different pairs u and a. We report also the best value of the upper
bound M and the p-value associated with our fit.
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Figure S23: BM data set. Same as Figure S22.
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Figure S24: BM data set. Same as Figure S22 and S23.
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a u α α′ M p

11 28 1.1(2) 1.4(1) 1290 0.23
13 48 1.5(1) 1.2(1) 570 0.00
13 28 1.3(1) 1.3(1) 310 0.15
15 11 1.8(3) 1.3(1) 180 0.23
15 36 2.0(1) 1.5(1) 200 0.19
28 28 1.4(1) 1.4(1) 530 0.53
32 150 1.2(6) 1.0(1) 160 0.00
39 48 1.3(1) 1.3(1) 170 0.02
47 28 1.1(1) 1.2(1) 320 0.59
50 48 1.5(1) 1.3(1) 600 0.38
52 28 1.2(2) 1.4(1) 2790 0.11
55 15 1.3(1) 1.3(1) 250 0.68
55 150 1.2(3) 1.1(1) 220 0.00
61 213 1.3(1) 1.3(1) 220 0.74
61 36 1.3(1) 1.2(1) 140 0.91
62 136 1.6(1) 1.5(1) 180 0.45
67 98 1.0(1) 1.0(1) 210 0.83
69 28 1.5(1) 1.4(1) 1840 0.37
82 36 1.2(2) 1.2(1) 360 0.01
89 72 1.4(1) 1.3(1) 330 0.30
89 48 1.5(1) 1.3(1) 230 0.42
89 28 1.2(1) 1.3(1) 1580 0.17
91 15 1.4(1) 1.4(1) 180 0.87
92 36 1.8(2) 1.3(1) 130 0.04
92 28 1.3(1) 1.4(1) 910 0.46
94 48 1.6(1) 1.2(1) 310 0.18

a u α α′ M p

94 98 1.5(2) 0.9(1) 280 0.03
94 15 1.5(1) 1.4(1) 290 0.28
105 28 1.5(1) 1.5(1) 1310 0.59
110 28 1.2(1) 1.4(1) 2870 0.36
116 15 1.2(1) 1.3(1) 3050 0.13
122 15 1.5(1) 1.4(1) 470 0.95
125 28 1.4(1) 1.4(1) 790 0.89
133 98 1.7(1) 1.2(1) 140 0.15
162 15 1.2(1) 1.4(1) 3270 0.54
181 15 1.2(2) 1.0(1) 250 0.34
197 15 1.2(2) 1.2(1) 180 0.79
201 15 1.3(2) 1.1(1) 110 0.43
262 150 1.3(8) 1.8(1) 1200 0.08
264 1428 1.5(2) 1.7(1) 1610 0.16
269 122 1.6(2) 1.7(1) 970 0.02
279 550 1.5(2) 1.6(1) 2600 0.32
293 3503 1.5(1) 1.5(1) 2030 0.01
300 550 1.5(1) 1.5(1) 290 0.68
300 150 1.7(1) 1.7(1) 1900 0.26
306 150 1.5(1) 1.4(1) 740 0.00
317 150 1.8(2) 1.6(1) 260 0.38
318 150 1.5(2) 1.4(1) 610 0.05
327 1503 1.3(1) 1.4(1) 230 0.54
327 150 1.6(1) 1.5(1) 290 0.46
331 150 1.6(2) 1.6(1) 1500 0.42
332 1574 1.6(2) 1.9(1) 1140 0.15

Table S5: BM data set. Each row corresponds to one of the 52 agents who have bid at least 100
times in the same auction. We report the id of the auction a, the id of the agent u, the exponent
α calculated with the least square method, the exponent α′ calculated with the maximum likeli-
hood method, the best value of the upper bound M and the p-value. Entries with low p-values
are highlighted in gray. In the 92% of the cases we find a p-value larger than 0, which indicates
that our model well describe the time series.

37



S 1.10.3 Probability distribution of the Lévy flight exponents

Figure S25: The pdf g (α) of the exponents calculated with the three fitting methods. The pdfs
corresponding to the maximum likelihood fit, where M is a parameter of the fit, are the same as
those appearing in Figs. 2D and 2E of the main text. The distributions are characterized by the
following values of the mode αb, average 〈α〉 and variance σ. UBH data set: for least square
fit we have αb = 1.34, 〈α〉 = 1.40, σ = 0.26; for maximum likelihood fit we have αb = 1.28,
〈α〉 = 1.29, σ = 0.20; for maximum likelihood fit with additional fitting parameter M we
have αb = 1.21, 〈α〉 = 1.26, σ = 0.23. BM data set: for least square fit we have αb = 1.46,
〈α〉 = 1.42, σ = 0.27; for maximum likelihood fit we have αb = 1.34, 〈α〉 = 1.37, σ = 0.21;
for maximum likelihood fit with additional fitting parameter M we have αb = 1.35, 〈α〉 = 1.36,
σ = 0.23.

As a final result, we compute the distribution g (α) of the exponents measured for single agents

in single auctions. We still consider only agents who have performed at least T = 50 bids

in a single auction in UBH data set and those with at least T = 100 in the BM data set.

Assuming that the best estimation of the exponent of agent u is αu and the associated error of

the measurement is ∆αu, the empirical distribution of the exponents is calculated as

g (α) = C−1
∑
u

1

∆αu

e−(αu−α)2 / [2 (∆αu)2] , (S4)

where C =
∫

dα
∑

u
1

∆αu
e−(αu−α)2 / [2 (∆αu)2] is the proper normalization constant. The result-

ing pdfs are reported in Fig. S25.
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