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Maximum Likelihood Estimation

Θ̂ = argmaxΘlog(Pr(S|Θ)) (1)

= argmaxΘlog
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Pr(sm,i|Θ, Sampm) (2)
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m=1

∏
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= argmaxΘlog
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∏
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k=1
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= argmaxΘlog
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∏
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(m)
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∑
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Expectation Maximization

ζ
(n)
s,k = EZ|S,Θ(n) [Zs,k] (7)

= E
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]
(8)

= Pr
(
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)
(9)

=
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)
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(
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E step:
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Q(n)(Θ) = EZ|S,Θ(n) [log(Pr(Z, S|Θ))] (12)

= EZ|S,Θ(n)

 M∑
m=1

∑
s=sm,∗

log
K∑
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Zs,kθkG
(m)
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 (13)
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 (14)

(for all Zs,∗, one and only one can have a value of 1) (15)

=
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M step:
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=
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Observed Fisher information matrix

I(Θ)p,q = −∂
2 log(Pr(S|Θ))

∂θp∂θq
, where p, q = 1, ...,K − 1 (21)
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Covariance matrix of the maximum likelihood estimator

Let T (S) = (θ̂1, ..., θ̂K−1, 1−
∑K−1

k=1 θ̂k)
T , and ψ(Θ) = E [T (S)]. The Cramér-Rao bound states that:

covΘ (T (S)) ≥ ∂ψ(Θ)

∂Θ
[I(Θ)]

−1

(
∂ψ(Θ)

∂Θ

)T

(26)

, where [∂ψ(Θ)/∂Θ]u,v = ∂ψu(Θ)/∂θv, u = 1, ...,K; v = 1, ...,K − 1.
We then estimate ψ(Θ) by Θ, and use the bound above to estimate the covariance matrix:

∂ψu(Θ)

∂θv
≈ ∂θu

∂θv
(27)

=

 1 if u = v and u, v < K;
−1 if u = K;
0 otherwise

(28)

covΘ (T (S)) ≈ ∂ψ(Θ)

∂Θ
[I(Θ)]

−1

(
∂ψ(Θ)

∂Θ

)T

(29)

=

[
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−1 · · · −1

]
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×
(
[I(Θ)]

−1
)
(K−1)×(K−1)

(30)

×

 −1

I(K−1)×(K−1)

...
−1


(K−1)×K

, I is the identity matrix (31)

=

[
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−
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k=1 I−1
k,1 · · · −
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]
K×(K−1)

(32)

×
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...
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=


−
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−
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(34)

We also have:

K∑
k=1

var
(
θ̂k

)
= tr

(
covΘ

(
Θ̂
))

(35)

= tr (covΘ (T (S))) (36)

≈ tr
(
[I(Θ)]

−1
)
+

K−1∑
i=1

K−1∑
j=1

[I(Θ)]
−1
i,j (37)

This means that we only need I(Θ) in order to estimate the performance of our MLE with different
sampling method combinations.
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Efficient Computation of I(Θ)

I(Θ)p,q = E [I(Θ)p,q] (38)

=
M∑

m=1

∑
s=sm,∗

E

[
−
∂2 log

∑K
k=1 δs,kθkG

(m)
s,k

∂θp∂θq

]
(39)

=
M∑

m=1

NmI(m)(Θ)p,q (40)

where

I(m)(Θ)p,q = Es∼Sampm

[
−
∂2 log

∑K
k=1 δs,kθkG

(m)
s,k

∂θp∂θq

]
(41)

is the expected Fisher information matrix of a single partial sample based on Sampm. Thus we need to
be able to compute I(m)(Θ) in order to obtain I(Θ).

I(m)(Θ)p,q =
K∑

k=1

θk


∑

s=s
(k)

[a,b)
;∀[a,b)∈Ik

−G(m)
s,k

∂2 log
∑K

k′=1 δs,k′θk′Gs,k′

∂θp∂θq

 (42)

=
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k=1

θk
∑

s=s
(k)

[a,b)
;∀[a,b)∈Ik

G
(m)
s,k I

(m)

s=s
(k)

[a,b)

(Θ)p,q (43)

where

I
(m)

s=s
(k)

[a,b)

(Θ)p,q = −
∂2 log

∑K
k′=1 δs,k′θk′G

(m)
s,k′

∂θp∂θq
(44)

=

(
δs,pG

(m)
s,p − δs,KG

(m)
s,K

)(
δs,qG

(m)
s,q − δs,KG

(m)
s,K

)
[∑K

k′=1 δs,k′θk′G
(m)
s,k′

]2 (45)

is the Fisher information matrix of a partial sample s from Sampm at [a, b) in Ik.

Proofs on Equivalent partial samples

I(m)(Θ)p,q =
K∑

k=1

θk


∑

s=s
(k)

[a,b)
;∀[a,b)∈Ik

−G(m)
s,k

∂2 log
∑K

k′=1 δs,k′θk′Gs,k′

∂θp∂θq

 (46)

=
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k=1

θk
∑

s=s
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G
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s,k I
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s=s
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where



5

I
(m)

s=s
(k)

[a,b)

(Θ)p,q = −
∂2 log

∑K
k′=1 δs,k′θk′G

(m)
s,k′

∂θp∂θq
(48)

=

(
δs,pG

(m)
s,p − δs,KG

(m)
s,K

)(
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(m)
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(m)
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[∑K
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(m)
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is the Fisher information matrix of a partial sample s from Sampm at [a, b) in Ik.

Definition 1. Two partial samples s1 and s2 are equivalent w.r.t. Sampm if and only if I
(m)
s1 (Θ) =

I
(m)
s2 (Θ).

Lemma 1. If ∀Ik ∈ I, δs1,kG
(m)
s1,k

= δs2,kG
(m)
s2,k

, then s1 and s2 are equivalent w.r.t. Sampm.

Proof. According to Equation 45, we have: I
(m)
s1 (Θ) = I

(m)
s2 (Θ). Thus the two partial samples are

equivalent w.r.t. Sampm according to Definition 1.

Definition 2. A set of partial samples S is an equivalent sample set w.r.t. Sampm if and only if
∀s1, s2 ∈ S, s1 and s2 are equivalent w.r.t. Sampm.

Lemma 2. Given an isoform Ik and a sampling method Sampm, if we divide all its possible partial
samples into n non-overlapping equivalent sample sets S1, S2, ..., Sn, then:

I(m)(Θ)p,q =
K∑

k=1

θk

n∑
i=1

|Si|G(m)
si,k

I(m)
si (Θ)p,q, for any si ∈ Si (50)

Proof. We can rewrite the
∑

s=s
(k)

[a,b)
;∀[a,b)∈Ik

G
(m)
s,k I

(m)

s=s
(k)

[a,b)

(Θ)p,q part in Equation 43 by dividing all the

possible s
(k,m)
a,b s into equivalent sample sets S1, S2, ..., Sn, and then obtain the equation above.

Definition 3. A simple shotgun sampling method Sampm generates samples with fixed read length rm.

When sampling from an isoform Ik with length lk, there are in total lk − rm + 1 different samples s
(k)
[a,b),

where a = 0, 1, 2, ..., (lk − rm); and b = a + rm. Each of these samples has equal probability of being

generated from Ik: G
(m)
s,k = 1/(lk − rm + 1).

Lemma 3. Given the sample generation model Sampm above, if two samples s1 and s2 generated by
this method are compatible with the same set of isoforms, i.e. δs1,k = δs2,k, ∀Ik ∈ I, then s1 and s2 are
equivalent w.r.t. Sampm.

Proof. If δs1,k = δs2,k = 0, then obviously δs1,kG
(m)
s1,k

= δs2,kG
(m)
s2,k

= 0. Otherwise, if δs1,k = δs2,k = 1,
then both s1 and s2 are partial samples that may be generated by Sampm from Ik. In this case, according

to Definition 3, G
(m)
s1,k

= G
(m)
s2,k

= 1/(lk − rm + 1). Thus we always have: δs1,kG
(m)
s1,k

= δs2,kG
(m)
s2,k

, ∀Ik ∈ I.
According to Lemma 1, s1 and s2 are equivalent w.r.t. Sampm.

Theorem 1. Given the sample generation model Sampm above, if two samples s1 and s2 generated by
this method overlap with all the junctions in the same set of connected exons ek1 → ek2 → ...→ ekn , then
s1 and s2 are equivalent w.r.t. Sampm.
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Proof. We first prove by contradiction that ∀Ik ∈ I, δs1,k = δs2,k:
If δs1,k ̸= δs2,k, without loss of generality, we assume that δs1,k = 1 and δs2,k = 0. Then there must

exist an exon junction eki
→ eki+1

, i ∈ {1, 2, ..., n − 1}, such that eki
→ eki+1

is not compatible with Ik
(otherwise, as a part of ek1 → ek2 → ... → ekn , s2 will be compatible with Ik). Since s1 overlaps with
the junction of eki → eki+1 , s1 is not compatible with Ik either, which will lead to a contradiction to the
previous assumption that δs1,k = 1. Thus the original statement δs1,k = δs2,k must be true.

Then according to Lemma 3, s1 and s2 are equivalent w.r.t. Sampm.

Use of empirical G function

To illustrate how non-uniform G function works, we modeled the bias of RNA-Seq data by aggregating
signal of mapped reads along annotated transcripts. A signal map of the first base of mapped reads was
generated. The signal was subsequently mapped onto the transcript and aggregated for all genes with
signal isoform. The aggregation plot for Young Adult is shown in Figure S1. Each transcript is divided
into 100 bins, accounting for their different lengths. The signals are normalized by the sum of signals
in all the bins. The normalized signal at each bin represents the probability that a read is generated at
certain position of the transcript. These non-uniform probabilities gave more realistic estimation of how
the reads are generated, and were plugged into the EM calculations.

Results with different read generation assumptions

We have also carried out additional analysis comparing the result of IQSeq with uniform read generation
assumption and with an empirical read generation model derived from the MAQC-3 dataset [1]. Figure S2
shows that while the overall results are still correlated, there are a significant number of isoforms with
different estimated quantity under such different read generation assumptions.

Replicate variance vs. FIM based variance estimation

With the same MAQC-3 data, we also compared the isoform quantification variances between repli-
cates with the FIM based variance estimations, and their logarithmic values have a correlation of 0.59
(Figure S3).
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Figure S1. Aggregated signal over all single isoform genes
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(a) Gene Level RPKM

(b) Isoform Level RPKM (log scale)

Figure S2. Results with uniform and non-uniform read generation models
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Figure S3. Replicate variance vs. FIM based variance estimation


