The simplified model illustrated in Figure 3 with 2 competitors c1 and c2, competing for a ‘target’ t, is easily extended to n competitors. In the binding steps (with rates αi) the competitors form a complex with the target. In the release steps (with rates (i) product (pi) is generated and competitors and target are released.

The following expression for the internal response coefficient is used:
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where nik. 
 is the stoichiometric coefficient of moiety k occuring in cycle i
Conservation relations:
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Applying equation (1) gives for the response of the steady-state flux Ji of competitor i to changes in the various internal variables:
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Then we calculate the following sum:
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To rewrite these equations we will use the generalized flux connectivity theorem (equation 19 in [20]):  
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which sums over all rates vi that are directly affected by a change in the internal metabolite Sk.

Assuming furthermore that the rates depend proportionally on their respective substrate concentrations (mass-action kinetics, all elasticity coefficients ( towards a substrate of the reaction are 1) the following is derived:
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Then we calculate the following sum:
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The elasticities can then be calculated based on the proposed rate equations (Figure 3B). The rate equations for competitor i read:
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With the elasticity defined as 
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 (cf. Methods), we can derive:
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Therefore:
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This relationship equates to 1 according to the summation theorem of metabolic control analysis.

Then equation (13) and (14) lead to an expression for the response coefficient for flux Ji with respect to the target concentration in terms of the response coefficients of this flux to the total competitor levels and their bound fractions:
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A similar procedure for the following sum: 
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 (proof in Text S1),
leads to:
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which is an expression for the response coefficient for flux Ji with respect to competitor i in terms of the response coefficient of this flux to the total target level and the fraction of total target bound to that competitor. 
And for the following sum:
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leads to:
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which is an expression for the response coefficient for flux Ji  with respect to competitor k in terms of the response coefficient of this flux to the total target level and the fraction of total target bound to competitor k. 
Using the expressions (3) and (4), we can then solve equation (15) for the response coefficient of the flux to the total concentration of target:
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