
I. SUPPORTING INFORMATION: POPULATION DYNAMICS OF DELAY-

INDUCED OSCILLATIONS

In the main text, we focused on two coupled delay-induced oscillations and studied their

dynamics using the two reduction methods. Here, to see the collective dynamics of many

interacting oscillations, we analyze a population of delay-induced oscillations with heteroge-

neous frequency distributions using the reduced equations obtained in the main text. As the

simplest case, we assume all-to-all global coupling among the oscillators and demonstrate

the emergence of macroscopic synchronization and amplitude death phenomena in the pop-

ulation [1, 2]. They have been predicted to occur in systems of globally coupled limit cycles,

but, to the best of our knowledge, this is the first demonstration in a system of coupled

delay-induced oscillations. Both of the non-trivial collective dynamics can be analytically

treated using the two reduction methods developed in the main text.

Since we consider global coupling, we assume Kjk = K and Ljk = L for all j and k in

Eq. (2). The number of the oscillators used in the numerical simulations is N = 256. The

mean frequency of the oscillators is chosen as the frequency obtained at the point A in Fig. 1,

which we denote by Ω. The frequency of each oscillator is independently chosen around this

Ω from a normal distribution with a fixed standard deviation σ. For all oscillators, we

assume the same value of the control parameter μ, i.e., their distances from the bifurcation

points are the same as that of the point A. The parameter sets (αj，βj) satisfying such

conditions are then inversely determined from Eq. (3) and from the relation α = μ + A,

while keeping other parameters fixed at the same values as those in the main text, i.e.,

γ = −2, δ = 0, ε = −10, and t0 = 8.

A. Kuramoto transition in a population of delay-induced oscillations

When the mutual coupling is weak enough, oscillators with nonidentical frequencies be-

have incoherently and no macroscopic oscillations are observed. As the coupling strength

is increased, the oscillators tend to synchronize with each other and macroscopic coherent

rhythms emerge. The most well-known example is the macroscopic synchronization tran-

sition in systems of globally coupled oscillators investigated by Kuramoto [1]. Suppose a
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system of N coupled oscillators described by the following phase model:

φ̇j(t) = ωj +
Kp

N

N∑

k=1

sin(φk − φj),

where φj is the phase of the jth oscillator, ωj is the natural frequency, and Kp is the

coupling strength. The natural frequency ωj of each oscillator is independently drawn from

a probability density g(ω), which is assumed to be symmetric and unimodal with a peak

at ω = ω0. It can be shown that this system undergoes a macroscopic synchronization

transition at Kp = 2/(πg(ω0)) and exhibits collective rhythms.

We here consider the Kuramoto transition in a system of globally coupled delay-induced

oscillations described by Eq. (1) in the main text. When the frequencies of the oscillators

are narrowly distributed and the coupling strength is relatively weak, we can approximate

Eq. (1) by the reduced phase equation (6) and treat the collective dynamics of the system

analytically. We assume that the oscillators interact only through the x component, i.e.,

we assume K > 0 and L = 0, and vary K as the control parameter. Equation (6) can

then be converted to the Kuramoto model given above. The critical coupling strength Kc

is predicted in Ref. [1] to be

Kc =
2
√

2σ(−γ)(1 −Ωt0 cot(Ωt0))√
πN

.

To check this prediction, we performed numerical simulations of Eq. (1). The param-

eter σ was set at σ = 1.5 × 10−3. Figure S1(A) shows the parameter sets (αj, βj) used

in the simulations. Figure S1(B) shows the time series of some of the delay-induced os-

cillations for K < Kc (top panel) and for K > Kc (bottom panel). We can clearly see

that the oscillations are mutually synchronized when K > Kc, though their waveforms

are not completely the same because their parameters are slightly different. Degree of the

macroscopic synchronization is measured by the order parameter R = 〈 1
N
|∑N

j=1 xj|〉, where

〈...〉 denotes time averaging. If all oscillators are perfectly synchronized at the same phase,

R =
√

2μ/(−3ε) � 0.028 is predicted from the reduced phase equation. Figure S1(C) shows

the order parameter R with respect to the normalized coupling strength K/Kc. We can

clearly observe the sudden increase in the order parameter R at K/Kc = 1, which indicates

emergence of collective oscillations at K = Kc.
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B. Amplitude death in a population of delay-induced oscillations

When the frequency distribution of the oscillators is relatively wide, the amplitude death

phenomenon, in which all oscillators are stabilized at their origin and stop oscillations, is

expected. Matthews, Mirollo, and Strogatz [2] carefully investigated the collective dynamics

of the CGL Eq. (5) and derived the conditions for the amplitude death. It can be considered

a generalization of the amplitude death phenomenon for two-oscillator systems that we

treated in the main text.

For simplicity, we consider a specific case that the ratio of the coupling strengths in the

x and ẋ components is kept constant, namely, we assume that K and L are given by

K =
Mμa2

N(a2 + b2)
, L =

Mμab

NΩ(a2 + b2)
,

with M being a control parameter. Equation (1) can then be reduced to the CGL equa-

tion (5) with a coupling term (Mμa/2N)(uk −uj), which is the form investigated in Ref. [2].

It is predicted that, under a necessary condition

σ > σc =
aμ

√
π

2
√

2
,

the amplitude death occurs when the control parameter M exceeds 1.

We fix the parameter σ at σ = 1.5 × σc for the numerical simulations, which results in

the parameter sets (αj, βj) shown in Fig. S1(A). Figures S2(B-D) show snapshots (top panel

in each figure) and time series (bottom) of the delay-induced oscillations for several values

of M . We can confirm that the oscillations cease and the amplitudes vanish when M > 1,

namely, the amplitude death actually occurs in a population of delay-induced oscillations.
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