Supplementary Methods

16S rRNA sequencing.

Sanger 16S rRNA primers.  Amplification of 16S rDNA was carried out using primers 27F (5’-AAGAGTTTGATCMTGGCTC-3’) and 1492R (5’-TACGGYTACCTTGTTACGACTT-3’).  PCR fragments were subcloned into TOP TA pCR4.0, followed by transformation into Escherichia coli TOP10 (Invitrogen). Individual sub-clones were sequenced on 3730 XL Applied Biosystems capillary sequencer to a depth of 768 amplicons. The M13F (5’-TGTAAAACGACGGCCAGT-3'), M13R (5’-CAGGAAACAGCTATGACC-3') and 907R (5’-CCGTCAATTCCTTTRAGTTT-3') primers were used for sequencing. 

454 pyrosequencing primers.  The V1-V3 region was targeted by using barcoded primers 27F (5’-AAGAGTTTGATCMTGGCTC-3’) and 534R (5’-ATTACCGCGGCTGCTGG-3’), and the V3-V5 region was targeted by using barcoded primers 357F (5’- CCTACGGGAGGCAGCAG-3’) and 907R (5’CCGTCAATTCMTTTRAGT).  These primers are identical to the primers used by the Human Microbiome Project to characterize the microbiota in healthy human subjects.

Sequencing analysis software. The software used for sequence analysis consisted of the function specific tools that were considered to be the standards in the academic community at the onset of this project.  The analysis software pipeline accommodates reads produced by both Sanger and pyrosequencing platforms. Forward and reverse Sanger reads from individual clones were assembled using phred and phrap 
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(Ewing and Green, 1998; Ewing et al., 1998)
 and sequences that did not form assemblages were discarded.  Pyrosequences were sorted into libraries by barcode using bartab (Frank, 2009).  All Sanger contigs and pyrosequences were screened for nucleotide quality (bases at 5’ and 3’ ends with mean Q <20 over a 10 nt window were discarded), ambiguous bases (sequences with >1 N were discarded), and minimum length (sequences <150 nt were discarded). 

The Infernal RNA alignment tool (Nawrocki et al., 2009) was used to screen all sequences in terms of their fidelity to a Covariance Model (CM) derived from SSU rRNA secondary structure models provided by the lab of Dr. Robin Gutell 
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(Cannone et al., 2002; Noller et al., 1986)
.  Sequences that did not adequately match a bacterial CM model were removed from all subsequent analyses.  This screening step aids in the process of eliminating non-rRNA sequences in general, and non-bacterial rRNA sequences in particular, ensuring compliance with the Health Insurance Portability and Accountability Act of 1996 (HIPAA) required for this project’s IRB.  Chimera screening was performed by the tool ChimeraSlayer (Haas et al.), which requires that sequences be previously aligned with NAST-iEr (Haas et al.).  Putative chimeras and other sequences that could not be aligned by NAST-iEr were removed from subsequent analyses. 
Genera level taxonomic calls were produced by the RDP Classifier (Wang et al., 2007), which performs naïve Bayesian taxonomic classification versus a training set.  This project used the code and training set provided by RDP on March 31, 2010 and April 6, 2010 respectively.  Sequences with bootstrap scores below 50% were removed from subsequent analysis. Analyses available within this system, but not used for this data set include, BLAST (Altschul et al., 1990) against curated rRNA databases such as the Silva 104 (Pruesse et al., 2007) isolates), and the computation of often used ecological statistics (Magurran, 2003).  The principal output of the pipeline was a tab-separated file that enumerated the number of times each unique taxonomy line was observed in each library.  The final step also produces a summary of the processing activity that took place in each function specific tool.  We note that as reported in a recent publication (Frank et al., 2011), the application of this pipeline to previously published sequence data produced nearly identical results to the original phylogenetic analysis.
Statistical Methods.Centered log ratio transformation. Centered log ratio transformation (clr) projects a composition from the D-part Aitchison-simplex symmetrically to a Euclidian vector subspace for n subjects as listed below. In our case D = 7 and n =164, 164 and 169 respectively for Sanger, 454V1-V3, and 454V3-V5 datasets.
clr (xij) = log (xij) – mean(log xj), i = 1,2,…D-1, j = 1,2,….n

In other words, frequencies (0-1) are calculated first.  To avoid 0 frequencies 0.5 are added to the raw counts for each bacterial category prior to calculating the frequencies.  Then after calculating the logarithm of these adjusted frequencies, the composition within each observation (subject) is centered (Aitchison, 1986).

Permutation based  ANCOVA and MANCOVA (Anderson, 2001; McArdle and Anderson, 2001). Generally, there are three advantages for this method: first, we do not have the multivariate normality restriction; second, distance calculation may not be of Euclidean (note that in our case, we still used Euclidean distance); third, it is able to handle high-dimensional dataset when N < p. The rationale for using Euclidean distance measurement as opposed to non-Euclidean dissimilarity measurements (e.g. Bray Curtiss) was to maintain consistency between the MANCOVA and the univariate analyses described below for each of the six individual bacterial categories.  The principle of this method can be described as following:

The first steps for calculating F-values are the same as those in parametric method. The difference is how to derive p-values. Under the null hypothesis, there is no difference among groups (factors). In other words, if observations with different group labels are re-arranged, F-values will not change. Therefore, we can derive p-value from a permutation-based pseudo F-statistic: recalculate F values by randomly re-ordering observations w.r.t. group labels. If all possible shuffling are made, we can obtain the pseudo-F distribution under the null hypothesis and the corresponding p-value =
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, where F* is the F-value for the original data. Finally, note that ANCOVA is just a special case for MANCOVA here.

R codes for stepwise variable selection with permutation-based MANCOVA:

##### Using Anderson's permutation-based MANOVA

library(vegan)

##### data should be cleaned first

X<-colnames(data)[21:(ncol(data)-1)]

X.pool<-X

X.pool

##### including all possible interaction terms second-order

for (i in 1:(length(X)-1)){


for (j in (i+1):length(X)){



X.pool<-c(X.pool,paste (X[i],X[j],sep=":"))


}

}

X.pool

##### variable selection 

##### may loose the entry and leaving level to >0.05 

p<-length(X.pool)

X.selected<-NULL

for (i in 1:p^2){


q<-length(X.pool)


pv<-rep(0,q)


### forward


for (j in 1:q){



### For categorical variable interaction term is always with main effects



temp<-unlist(strsplit(X.pool[j],":"))



if (length(temp)==1){ 




X.temp<-c(X.selected,temp)



}else{




X.temp<-c(X.selected,temp,X.pool[j])



}



X.temp<-unique(X.temp)



fit<-adonis(formula(paste("data[,2:7]~",paste(X.temp,collapse="+"))),data=data,method="euclidean")



### It is possible the tested term is an exact linear combination of others



indx<-(rownames(fit$aov.tab)==X.pool[j])



if (sum(indx)>0){




pv[j]<-fit$aov.tab[indx,6]



} else {




pv[j]<-1



}


}


if (min(pv)>=0.05) {



break


} else {



indx<-sort(pv,index.return=TRUE)$ix[1]



print(c("in",X.pool[indx],min(pv)))



X.selected<-c(X.selected,X.pool[indx])



X.pool<-X.pool[-indx]


}


### backward


### Be noticed that it is for "Type III" SS not the original SS in package as the orginal depends on the order of variables


for (k in 1:length(X.selected)){



X.temp<-X.selected[-k]



temp<-unlist(strsplit(X.selected[k],":"))



if (length(temp)==1){ 




X.temp<-c(X.temp,temp)



}else{




X.temp<-c(X.temp,temp,X.selected[k])



}



X.temp<-unique(X.temp)



fit<-adonis(formula(paste("data[,2:7]~",paste(X.temp,collapse="+"))),data=data,method="euclidean")



### Still it is possible the tested term is a exact linear combination of others



indx<-(rownames(fit$aov.tab)==X.selected[k])



if (sum(indx)>0){




pv<-fit$aov.tab[indx,6]




if (pv>=0.05) {





print(c("out",X.selected[k],pv))





X.pool<-c(X.pool,X.selected[k])





X.selected<-X.selected[-k]





break





}



} 



if (sum(indx)==0){




print(c("out",X.selected[k],"not shown"))




X.pool<-c(X.pool,X.selected[k])




X.selected<-X.selected[-k]




break




}


}

}

X.selected

Repeated measures ANOVA.  Repeated measures ANOVA follows the similar permutation steps as above (Anderson and  Legendre,1999).  The only difference is that permutations for repeated measures ANOVA are involved at two levels. It follows that the first level of permutation of observations to the combination of factors provides distribution against which to test the between-subject effects, while the second level of permutation within each subject provides distributions against which to test the within-subject (measures of three sequencing platforms) effect (Manly, 1997). Then p values are computed accordingly.  R2 were computed from the repeated measures ANOVA by the equation R2= (Sum square of the variable) / (Total sum square). So for measurement, R2= (Sum square of measurements) / (Total sum square).
R codes for permutation-based repeated measures ANOVA:

btw.permutation <- function(data,f,vnum,varnames){


anova<-summary(aov(f,data = data))


print(anova)


names(anova) <- c("a","b")


ttt <- unlist(anova$a)


count <- vector(mode = "integer",length = vnum)


f0 <- vector(mode = "integer",length = vnum);


for (j in 1:vnum){



f0[j] <- ttt[paste("F value",j,sep = "")]



if (ttt[paste("Pr(>F)",j,sep = "")]<0.05) count[j]<- count[j]+1;


}


for (i in 1: 999){



ind <- rep(sample.int(157),3)



data.new <-data;



data.new[,colnames(data)==varnames] <- data[,colnames(data)==varnames][ind]



anova.new <- summary(aov(f,data = data.new))



names(anova.new) <- c("a","b")



xxx <- unlist(anova.new$a)



for (j in 1:vnum){




if (xxx[paste("F value",j,sep = "")]>f0[j]) count[j]<- count[j]+1;



}


}


print(varnames)



print(t(count/1000))

}

within.permutation <- function(data,f,vnum,varnames){


anova<-summary(aov(f,data = data))


print(anova)


names(anova) <- c("a","b")


ttt <- unlist(anova$b)


count <- 0


f0 <- ttt["F value1"]


if (ttt["Pr(>F)1"]<0.05) count<- count+1;


for (i in 1: 999){



mat <- c();



for (j in 1:157){




mat <- rbind(mat,sample(c(j,j+157,j+314)))



}



ind <- c(mat[,1],mat[,2],mat[,3])



data.new <-data;



data.new[,colnames(data)==varnames] <- data[,colnames(data)==varnames][ind]



anova.new <- summary(aov(f,data = data.new))



names(anova.new) <- c("a","b")



xxx <- unlist(anova.new$b)



if (xxx["F value1"]>f0) count<- count+1;


}


print(varnames)



print(t(count/1000))

}

############

btw.permutation(data,f,vnum,varnames)

############

within.permutation(data,f,vnum,varnames)

####Actino;

f <- as.formula("Act1 ~ Phenotype + Cdiff + steroids + BMI + NOD2 + smoking + AgeS + ATG16L1 + ASA + BMI:NOD2 + smoking:NOD2 + steroids:NOD2 + AgeS:ATG16L1 + ASA:Cdiff + Measure + Error(SUBJID)");

vnum <- 14;

varnames <- "Act1"

####Bac;

f <- as.formula("Bac1 ~ Phenotype + immunomodulator + SEX + smoking + NOD2 + ASA + AgeS + Cdiff + ATG16L1 + steroids + immunomodulator:SEX + smoking:NOD2 + Phenotype:ASA + ASA:AgeS + ASA:Cdiff + Cdiff:ATG16L1 + steroids:immunomodulator + ASA:NOD2 + Measure + Error(SUBJID)");

vnum <- 18;

varnames <- "Bac1"

####FirB1;

f <- as.formula("FirB1 ~ Phenotype + steroids + AgeS + ASA + ATG16L1 + Cdiff + NOD2 + immunomodulator + Phenotype:steroids + Phenotype:AgeS + ASA:ATG16L1 + steroids:immunomodulator + NOD2:ATG16L1 + Measure + Error(SUBJID)");

vnum <- 13;

varnames <- "FirB1"

####FirCL1;

f <- as.formula("FirCL1 ~ Phenotype + SEX + AgeS + smoking + Cdiff + NOD2 + ASA + BMI + ATG16L1 + Phenotype:AgeS + Cdiff:NOD2 + ASA:BMI + NOD2:ATG16L1+ Measure + Error(SUBJID)");

vnum <- 13;

varnames <- "FirCL1"

####FirCLa1;

f <- as.formula("FirCLa1 ~ Phenotype + AgeS + NOD2 + TNF + Cdiff + immunomodulator + smoking + SEX + steroids + BMI + Phenotype:AgeS + TNF:Cdiff + immunomodulator:smoking + TNF:SEX + steroids:BMI + steroids:immunomodulator + Measure + Error(SUBJID)");

vnum <- 16;

varnames <- "FirCLa1"

####Pro1;

f <- as.formula("Pro1 ~ NOD2 + Phenotype + SEX + steroids + immunomodulator + ASA + RACE + steroids:NOD2 + steroids:immunomodulator + ASA:RACE + NOD2:ATG16L1 + Measure + Error(SUBJID)");

vnum <- 11;

varnames <- "Pro1"
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