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A The Data

Scatter plots of the datasets (by Recent Infection Testing Algorithm (RITA) and
country of collection) are provided below. The standardised optical density (SOD)
at the time of the first seropositive donation and the interdonation (ID) interval
between the last seronegative and first seropositive donation, for each seronverting
blood donor, are shown. SOD values below the thresholds (indicated by blue lines)
indicate recent infections.

Figure 1: Vironostika-LS, South Africa
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Figure 2: Vironostika-LS, USA
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Figure 3: Vitros-LS, South Africa
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B The RITA Characteristic Estimators

The maximum likelihood estimators for the RITA characteristics to be estimated
are derived below. The distributional properties of the estimators, for large samples,
are also noted.

Derivation of the Maximum Likelihood Estimators

For a seroconverter with interdonation (ID) interval ∆ between the last seronegative
test and first seropositive test:

1. X denotes the result of the RITA at the time of the first seropositive test, and
has a probability mass function fX(x),

X =

{
1 if recently infected
0 if non-recently infected

.

2. Y is the time since seroconversion at the time of the first seropositive donation,
and the time of seroconversion is uniformly distributed in the ID interval,

fY (y) =
1

∆
0 ≤ y ≤ ∆.

The joint probability function of X and Y is denoted by fX,Y (x, y), and the
distribution of X conditional on Y by fX|Y (x|y).

3. SR(t) is the probability that the seroconverter is in the state of recent infection
a time t after seroconversion, conditional on being alive. SR(t) = fX|Y (x|y).

The probability, p, that the seroconverter is classified as recently infected at the
time of the first seropositive donation is

p = fX(1)

=

∫ ∆

0
fX,Y (1, t) dt

=

∫ ∆

0
fY (t) fX|Y (1|t) dt

=

∫ ∆

0

1

∆
SR(t) dt

=

∫ ∆
0 SR(t) dt

∆
. (1)
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The likelihood, L, of all RITA classifications in a sample of n seroconverters is

L =
n∏

i=1

(pi)
xi (1− pi)1−xi , (2)

where the subscript i denotes quantities relating to the ith seroconverter in the
sample, and x denotes the observed values of X.

The analyses of McDougal et al [1], McWalter and Welte [2] and Wang and La-
gakos [3] assume individual SOD curves either cross the threshold (distinguishing
recent from non-recent infection) and remain above it or fail to reach the threshold,
and therefore SR(t) approaches some constant value, α, which is the proportion of
SOD curves that fail to cross the threshold, for t larger than some time cutoff T ,

SR(t) = α+ (1− α)SR′(t), (3)

The mean recency duration, ω, is the mean of the times taken to cross the threshold,
for those SOD curves that do so, described by SR′(t).

More generally, SR(t) may not remain constant for t > T . A false-recent rate, ε,
may then be defined as the proportion of individuals, who have been seropositive
for longer than T , that is classified as recently infected [4].

For SR(t) exhibiting little variability around an approximately constant value for
t > T , the parameterisation in (3) is used to obtain rough estimates of the RITA
characteristics.

Substituting (3) into (1), the probability that the seroconverter is recently infected
at the time of the first seropositive donation becomes

p = α+ (1− α)

∫ ∆
0 SR′(t) dt

∆
. (4)

For SR′(t) = SR′(θ, t), L is a function of the unknown parameters θ and α (if there
is no input estimate for α), which are estimated to maximise L. The estimate of ω
is
∫∞

0 SR′(θ̂, t) dt, where θ̂ is the estimate of θ.

This likelihood approach also facilitates non-parametric inference, by considering
only individuals with large ∆. Since

SR′(t) = 0 (i.e. SR(t) = α) for t > T, (5)

if ∆ > T , then ∫ ∆

0
SR′(t) dt =

∫ ∞
0

SR′(t) dt = ω (6)

is the mean recency duration.

Substituting (6) into (4), p becomes a function of the RITA characteristics,

p = α+ (1− α)
ω

∆
, (7)
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and the likelihood function becomes

L =

n∗∏
i=1

(pi)
xi (1− pi)1−xi where pi = α+ (1− α)

ω

∆i
(8)

and n∗(≤ n) is the size of the sample consisting of all seroconverters with ID intervals
larger than T (and the subscript i denotes quantities relating to the ith individual in
this smaller sample). The estimated RITA characteristics maximize the likelihood
L, which is now a function of ω, and α (if there is no input estimate of α).

Simultaneous estimation of the RITA characteristics is less feasible in samples with
closely clustered ID intervals. In the extreme case of ∆i = ∆ for all i, simultaneous
estimation is not possible as there are no unique estimates of ω and α which maximise
the likelihood function

L ∝
(
α+ (1− α)

ω

∆

)∑n∗
i=1xi

(
1− α− (1− α)

ω

∆

)∑n∗
i=1 (1−xi)

, (9)

(which is maximised when

∑n∗

i=1 xi
n∗

= α+ (1− α)
ω

∆
).
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Properties of the Estimators

A maximum likelihood estimator, ξ̂, is asymptotically (as the sample size n→∞)
normally distributed around the true parameter value, ξ, with variance equal to the
inverse of the expected Fisher’s Information Matrix:

ξ̂
d−→ N

ξ,[−E(∂2 ln(L(ξ))

∂ξ2

)]−1
 as n→∞ (10)

where E(.) is the expected value and L(.) is the likelihood function, under regularity
conditions [5].

Large sample approximations for the properties of the estimators for the mean re-
cency duration and proportion of SOD curves that fail to reach the threshold, ω̂
and α̂, follow.

1. α known

ω̂ ∼ N

ω,[ n∗∑
i=1

(
1− α

∆i

)2( 1

pi
+

1

1− pi

)]−1
 , (11)

where pi and L = L(ω) are given in (8).

2. α unknown

 ω̂

α̂

 ∼ N


 ω

α

 ,
−E


∂2 ln(L)

∂ω2

∂2 ln(L)

∂ω ∂α

∂2 ln(L)

∂α ∂ω

∂2 ln(L)

∂α2



−1
 , (12)

where the covariance matrix is
n∗∑
i=1

(
1− α

∆i

)2( 1

pi(1− pi)

) n∗∑
i=1

1

∆ipi
n∗∑
i=1

1

∆ipi

n∗∑
i=1

(
1− ω

∆i

)2( 1

pi(1− pi)

)

−1

, (13)

and pi and L = L(ω, α) are given in (8).
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C Fit of Estimated RITA Characteristics,
Vironostika-LS

The method of maximum likelihood, outlined in Section B above, was used to char-
acterise the Vironostika-LS, in the South African and American repeat donor pop-
ulations. Firstly, the mean recency duration, ω, was estimated assuming a known
α. Secondly, simultaneous estimation of ω and α was performed. Non-parametric
estimation was applied, using data on seroconverters with interdonation (ID) in-
tervals larger than T = 1 year (n = 282 for South Africa and n = 106 for USA).
In the figures below, the observed percentages and expected percentages (obtained
by substituting estimated RITA characteristics into (7)) of seroconverters who were
recently infected at the first seropositive donations, as a function of ID interval,
are compared. Subjects with similar ID intervals were grouped together (at least
20 subjects per group), and the observed and expected percentages were plotted
against the average ID interval, per group. In Figures 4 and 6, the 95% confidence
interval limits for the expected percentages (dotted lines) are obtained by substitut-
ing the 95% confidence interval limits for ω, not taking any uncertainty in α into
account, into (7). In Figures 5 and 7, the plotted limits for the expected percent-
ages (dotted lines) indicate the minimum and maximum values for the probability
of being recently infected, p, obtained when considering all pairs of values for the
RITA characteristics lying within the 95% confidence regions for ω and α.
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Figure 4: Agreement between the observed and expected percentages of recently
infected seroconverters for the Vironostika-LS, in the South African repeat donor
population, assuming a known α, for T = 1 year
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Figure 5: Agreement between the observed and expected percentages of recently
infected seroconverters for the Vironostika-LS, in the South African repeat donor
population, simultaneously estimating ω and α, for T = 1 year
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Figure 6: Agreement between the observed and expected percentages of recently
infected seroconverters for the Vironostika-LS, in the American repeat donor popu-
lation, assuming a known α, for T = 1 year
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Figure 7: Agreement between the observed and expected percentages of recently
infected seroconverters for the Vironostika-LS, in the American repeat donor popu-
lation, simultaneously estimating ω and α, for T = 1 year
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D Parametric Versus Non-Parametric Estimation

By using only data with sufficiently large interdonation (ID) intervals, the need for
parametric assumptions is circumvented (see Section B above). While this protects
against bias arising from poor parametric assumptions, the sample size is reduced.

The RITA characteristics of the Vironostika-LS, in the South African repeat donor
population, were estimated using all data and a number of parametric assumptions
(characterisations of SR′(t) = SR′(θ, t), where θ is a vector of parameters). The seven
assumed forms for SR′(θ, t) are plotted in Figure 8. By design, θ = ω for each form.

In Table 1, estimates of the mean recency duration, ω, using the various parametric
assumptions, are tabulated. The results of the chi-squared goodness of fit tests [6],
used to assess the agreement between the data and assumptions, are also provided.
Widely varying estimates of ω were obtained, even after discarding those estimates
for which data and assumptions poorly agreed. Since the underlying dynamics of
the data are unknown, the extent of bias is unknown.

Simulated data was therefore used to investigate the trade-off between the increased
precision from larger samples and increased potential for bias from poor parametric
assumptions, when moving to a parametric approach. 100 datasets (of 500 sero-
converters each) were simulated, assuming each of the seven forms for SR′(θ, t) and
α = 0%. ID intervals were simulated from a non-parametric distribution fitted to the
ID intervals in the dataset for the Vironostika-LS, South Africa. For each dataset,
the goodness of fit was assessed and ω estimated, using each parametric assump-
tion. The non-parametric method was also applied, using all ID intervals greater
than T = 1 year. Underestimation of ω is therefore expected for the distributions
with maximum times in the state of recent infection greater than 1 year.

The results of the investigation, provided in Table 2, indicate that, although moving
to a parametric approach allows all data to be exploited, there is the potential of
introducing large bias in estimates from indistinguishably poor parametric assump-
tions. The average 95% confidence interval widths, when using the correct paramet-
ric assumptions and the non-parametric approach, are also provided in Table 2. The
increased widths when moving to the non-parametric approach illustrate the loss of
precision incurred when discarding data with insufficiently large ID intervals.
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Figure 8: The various parametric assumptions, plotted for a mean recency duration,
ω, of 150 days
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Table 1: Estimated mean recency duration for the Vironostika-LS, in the South
African repeat donor population, using various parametric assumptions

  

Estimate of mean recency duration, days 
(95% CI) 

Goodness of fit test: Result 
(p-value)

1
 

  α = 0% α = 5% α = 10% α = 15% α = 0% α = 5% α = 10% α = 15% 

Parametric 
estimation: 

Assumed 
survival 
function  

1 
84 
(82-84) 

83 
(81-84) 

83 
(81-84) 

83 
(80-84) 

Reject 
(0%) 

Reject 
(0%) 

Reject 
(0%) 

Reject 
(0%) 

2 
316  
(266-374) 

278  
(233-333) 

251  
(209-301) 

229  
(188-276) 

Fail to Reject 
(29%) 

Fail to Reject 
(10%) 

Fail to Reject 
(56%) 

Fail to Reject 
(73%) 

3 
237  
(217-249) 

228  
(204-246) 

219  
(192-242) 

208  
(180-235) 

Reject  
(3%) 

Fail to Reject 
(57%) 

Fail to Reject 
(65%) 

Fail to Reject 
(80%) 

4 
429  
(355-520) 

379  
(309-464) 

338  
(273-418) 

303  
(242-378) 

Reject  
(2%) 

Fail to Reject 
(12%) 

Fail to Reject 
(16%) 

Fail to Reject 
(9%) 

5 
650  
(528-802) 

579  
(464-721) 

516  
(409-649) 

461  
(361-585) 

Fail to Reject 
(9%) 

Reject  
(2%) 

Fail to Reject 
(8%) 

Reject  
(3%) 

6 
268  
(232-309) 

241  
(207-281) 

221  
(188-259) 

205  
(173-242) 

Fail to Reject 
(5%) 

Fail to Reject 
(56%) 

Fail to Reject 
(69%) 

Fail to Reject 
(90%) 

7 
274  
(235-318) 

245  
(210-287) 

225  
(190-264) 

208  
(175-246) 

Fail to Reject 
(8%) 

Fail to Reject 
(73%) 

Fail to Reject 
(91%) 

Fail to Reject 
(85%) 

Non-parametric 
estimation 

274  
(234-313) 

245  
(199-289) 

216  
(165-266) 

186  
(132-241) 

    

1 
Null hypothesis: The data is consistent with the assumed survival function (survival in state of recent infection), significance level of 5% 

 
 
 

Mean of non-rejected estimated 
mean recency durations, days 

(% of estimates rejected) 
[Average 95% CI width, days] 

Parametric estimation: Assumed survival function 

Non-parametric 
estimation 

1 2 3 4 5 6 7 

'True' distribution from 
which data generated 

1 
153  
(2%) 
[27] 

187   
(87%) 
 

197   
(23%) 
 

 - 
(100%) 
 

 - 
(100%) 
 

174   
(28%) 
 

171   
(33%) 
 

150   
(0%) 
[79] 

2 
 - 
(100%) 
 

153   
(2%) 
[51] 

129   
(67%) 
 

191   
(7%) 
 

273   
(22%) 
 

138   
(32%) 
 

142   
(12%) 
 

153   
(0%) 
[79] 

3 
102  
(94%) 
 

154   
(10%) 
 

151   
(3%) 
[42] 

197   
(37%) 
 

286   
(68%) 
 

140   
(7%) 
 

140   
(6%) 
 

148   
(0%) 
[79] 

4 
 - 
(100%) 
 

122   
(19%) 
 

105   
(80%) 
 

151   
(5%) 
[59] 

212   
(9%) 
 

106   
(77%) 
 

110   
(64%) 
 

144   
(0%) 
[78] 

5 

 - 
(100%) 
 
 

90   
(68%) 
 

78   
(92%) 
 

110   
(13%) 
 

151   
(3%) 
[68] 

84   
(97%) 
 

86   
(96%) 
 

128   
(0%) 
[74] 

6 
108  
(96%) 
 

164   
(5%) 
 

154   
(16%) 
 

207   
(35%) 
 

295   
(79%) 
 

151   
(2%) 
[44] 

152   
(5%) 
 

149   
(0%) 
[79] 

7 
122 
(96%) 
 

170 
(15%) 
 

163 
(26%) 
 

217  
(51%) 
 

311 
(86%) 
 

156  
(2%) 
 

157  
(4%) 
[47] 

151 
(0%) 
[79] 

 

Table 2: Estimated mean recency duration for the simulated data, using various
parametric assumptions, where the true mean recency duration is 150 days

  

Estimate of mean recency duration, days 
(95% CI) 

Goodness of fit test: Result 
(p-value)

1
 

  α = 0% α = 5% α = 10% α = 15% α = 0% α = 5% α = 10% α = 15% 

Parametric 
estimation: 

Assumed 
survival 
function  

1 
84 
(82-84) 

83 
(81-84) 

83 
(81-84) 

83 
(80-84) 

Reject 
(0%) 

Reject 
(0%) 

Reject 
(0%) 

Reject 
(0%) 

2 
316  
(266-374) 

278  
(233-333) 

251  
(209-301) 

229  
(188-276) 

Fail to Reject 
(29%) 

Fail to Reject 
(10%) 

Fail to Reject 
(56%) 

Fail to Reject 
(73%) 

3 
237  
(217-249) 

228  
(204-246) 

219  
(192-242) 

208  
(180-235) 

Reject  
(3%) 

Fail to Reject 
(57%) 

Fail to Reject 
(65%) 

Fail to Reject 
(80%) 

4 
429  
(355-520) 

379  
(309-464) 

338  
(273-418) 

303  
(242-378) 

Reject  
(2%) 

Fail to Reject 
(12%) 

Fail to Reject 
(16%) 

Fail to Reject 
(9%) 

5 
650  
(528-802) 

579  
(464-721) 

516  
(409-649) 

461  
(361-585) 

Fail to Reject 
(9%) 

Reject  
(2%) 

Fail to Reject 
(8%) 

Reject  
(3%) 

6 
268  
(232-309) 

241  
(207-281) 

221  
(188-259) 

205  
(173-242) 

Fail to Reject 
(5%) 

Fail to Reject 
(56%) 

Fail to Reject 
(69%) 

Fail to Reject 
(90%) 

7 
274  
(235-318) 

245  
(210-287) 

225  
(190-264) 

208  
(175-246) 

Fail to Reject 
(8%) 

Fail to Reject 
(73%) 

Fail to Reject 
(91%) 

Fail to Reject 
(85%) 

Non-parametric 
estimation 

274  
(234-313) 

245  
(199-289) 

216  
(165-266) 

186  
(132-241) 

    

1 
Null hypothesis: The data is consistent with the assumed survival function (survival in state of recent infection), significance level of 5% 

 
 
 

Mean of non-rejected estimated 
mean recency durations, days 

(% of estimates rejected) 
[Average 95% CI width, days] 

Parametric estimation: Assumed survival function 

Non-parametric 
estimation 

1 2 3 4 5 6 7 

'True' distribution from 
which data generated 

1 
153  
(2%) 
[27] 

187   
(87%) 
 

197   
(23%) 
 

 - 
(100%) 
 

 - 
(100%) 
 

174   
(28%) 
 

171   
(33%) 
 

150   
(0%) 
[79] 

2 
 - 
(100%) 
 

153   
(2%) 
[51] 

129   
(67%) 
 

191   
(7%) 
 

273   
(22%) 
 

138   
(32%) 
 

142   
(12%) 
 

153   
(0%) 
[79] 

3 
102  
(94%) 
 

154   
(10%) 
 

151   
(3%) 
[42] 

197   
(37%) 
 

286   
(68%) 
 

140   
(7%) 
 

140   
(6%) 
 

148   
(0%) 
[79] 

4 
 - 
(100%) 
 

122   
(19%) 
 

105   
(80%) 
 

151   
(5%) 
[59] 

212   
(9%) 
 

106   
(77%) 
 

110   
(64%) 
 

144   
(0%) 
[78] 

5 

 - 
(100%) 
 
 

90   
(68%) 
 

78   
(92%) 
 

110   
(13%) 
 

151   
(3%) 
[68] 

84   
(97%) 
 

86   
(96%) 
 

128   
(0%) 
[74] 

6 
108  
(96%) 
 

164   
(5%) 
 

154   
(16%) 
 

207   
(35%) 
 

295   
(79%) 
 

151   
(2%) 
[44] 

152   
(5%) 
 

149   
(0%) 
[79] 

7 
122 
(96%) 
 

170 
(15%) 
 

163 
(26%) 
 

217  
(51%) 
 

311 
(86%) 
 

156  
(2%) 
 

157  
(4%) 
[47] 

151 
(0%) 
[79] 
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E Fit of Estimated RITA Characteristics, Vitros-LS

The method of maximum likelihood, outlined in Section B above, was used to char-
acterise the Vitros-LS, in the South African repeat donor population. Firstly, the
mean recency duration, ω, was estimated assuming a known α. Secondly, simultane-
ous estimation of ω and α was performed. Non-parametric estimation was applied,
using only data points with interdonation (ID) intervals larger than T . In the figures
below, the observed percentages and expected percentages (obtained by substitut-
ing estimated RITA characteristics into (7)) of seroconverters who were recently
infected at the first seropositive donations, as a function of ID interval, are com-
pared for T = 1 year (n = 108) and T = 2.5 years (n = 59). Subjects with similar
ID intervals were grouped together (at least 20 subjects per group), and the observed
and expected percentages were plotted against the average ID interval, per group.
In Figures 9 and 11, the 95% confidence interval limits for the expected percent-
ages (dotted lines) are based on the 95% confidence interval limits for ω, not taking
any uncertainty in α into account. In Figures 10 and 12, the plotted limits for the
expected percentages (dotted lines) indicate the minimum and maximum percent-
ages obtained when considering all pairs of values for the RITA characteristics lying
within the 95% confidence regions for ω and α.
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Figure 9: Agreement between the observed and expected percentages of recently
infected seroconverters for the Vitros-LS, in the South African repeat donor popu-
lation, assuming a known α, for T = 1 year
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Figure 10: Agreement between the observed and expected percentages of recently
infected seroconverters for the Vitros-LS, in the South African repeat donor popu-
lation, simultaneously estimating ω and α, for T = 1 year
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Figure 11: Agreement between the observed and expected percentages of recently
infected seroconverters for the Vitros-LS, in the South African repeat donor popu-
lation, assuming a known α, for T = 2.5 years

0 1000 2000 3000 4000
0

20

40

60

80

ID interval (days)

P
er

ce
nt

ag
e 

R
IT

A
−

re
ce

nt
 (

%
)

α = 0%

0 1000 2000 3000 4000
0

20

40

60

80

ID interval (days)

P
er

ce
nt

ag
e 

R
IT

A
−

re
ce

nt
 (

%
)

α = 10%

0 1000 2000 3000 4000
0

20

40

60

80

ID interval (days)

P
er

ce
nt

ag
e 

R
IT

A
−

re
ce

nt
 (

%
)

α = 20%

0 1000 2000 3000 4000
0

20

40

60

80

ID interval (days)

P
er

ce
nt

ag
e 

R
IT

A
−

re
ce

nt
 (

%
)

α = 30%

 

 

Observed percentage
Expected percentage
95% CI limits



21

Figure 12: Agreement between the observed and expected percentages of recently
infected seroconverters for the Vitros-LS, in the South African repeat donor popu-
lation, simultaneously estimating ω and α, for T = 2.5 years
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