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Appendix S1: Construction of the monitoring rules 

 

Square-root transformation is considered appropriate for a linear description of individual 

trajectories of CD4 counts in untreated patients infected with HIV-1 , beyond the acute 

changes observed during the few months after primary infection. According to this model, 

the square root of the CD4 count (Yij) observed in subject i at time tj can be written as:  

 Yij = ai – bi · tj + εij (equation 1) 

where ai is the ith subject’s specific baseline (set point) CD4 count; bi is the slope of the 

fall in CD4 count; and εij captures the within-subject variability, which is composed of 

short-term random fluctuation, laboratory imprecision, and model inaccuracy. The εij 

values are assumed to be independent deviates sampled from a normal distribution  

N(0, σe
2) with mean zero and standard deviation σe; more elaborate models allow for 

autocorrelation among εij values over time. The subject-specific parameters ai and bi are 

considered to arise from population distributions N(α, σa
2) and N(β, σb

2) around their 

respective population means α and β (with correlation ρab unless ai and bi vary 

independently). Patient descriptors, such as age and initial viral load, can be used to 

refine the determination of α and β in given subgroups.  

In this conceptual framework, the long-term trajectory of the individual fall in CD4 count 

is defined by the subject’s specific slope bi and intercept ai, which represent the signal 

hidden by the noise of the within-subject fluctuations εij. As the fall in CD4 count 

depends on the individual slope (bi) and the time interval, measurements made close 

together capture only short-term variability and contain little information about the 

subject’s slope. On the other hand, multiple determinations at distant intervals will refine 

evaluation of the subject’s true trajectory and current state. Monitoring decisions will 

vary according to the distance of the patient from the threshold for antiretroviral 

treatment (ART), YART, which represents a specific aspect of CD4 monitoring.  
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We therefore designed two rules to guide decisions on CD4 monitoring frequency [1], a 

“snap-shot rule” and a “track-shot rule”: 

“Snap-shot rule”: The first rule applies to a single CD4 measurement, Yobs, at time 

tobs. Given Yobs, we aim to determine the time to the next observation, Ynext, that has a 

probability P of being less than the decision threshold value YART. This translates into 

determining a time, tnext, for which the likelihood of finding a clinically relevant result 

becomes non-negligible. Given Yobs, the unknown true value of the subject’s 

trajectory is contained within an interval that is determined by the within-subject 

variability, σe, the average population slope, β, and the individual slope variability, σb. 

Ynext can be written as:  

 Ynext = Yobs – β·(tnext – tobs) + (εnext – εobs) (equation 2) 

with a mean expectation of Ynext given Yobs :  

 E(Ynext | Yobs) = Yobs – β·(tnext – tobs)  (equation 3) 

and a variance of Ynext given Yobs :  

 var(Ynext | Yobs) = 2·σe
2 + σb

2·(tnext – tobs)2 (equation 4) 

assuming that the individual slope b and the errors εnext and εobs are independent.  

Based on this, a prediction interval PI2P at the defined probability level 2·P can be 

established around Ynext, using the corresponding standard normal deviate zP: 

 PI2P(Ynext) = [ Yobs – β·(tnext – tobs) – zP · , 

   Yobs – β·(tnext – tobs) + zP ·
 
] 

Thus, at a certain time tnext, the lower limit of this prediction interval is expected to 

reach the threshold value YART with a probability P. At this time, the following 

relation will hold true, replacing (tnext – tobs) by ∆t :  

 YART  = Yobs – β·∆t – zP ·
 

(equation 5) 

 

  2 2 2 2 b e ∆t ⋅ + ⋅ σ σ 

  2 2 2 ) ( 2 obs next b e t t − ⋅ + ⋅ σ σ 

  2 2 2 ) ( 2 obs next b e t t − ⋅ + ⋅ σ σ 
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Rearranging:  

 YART  – Yobs + β·∆t  = – zP ·
 

(equation 6) 

Squaring: 

 YART
2

  + Yobs
2 + β2·∆t2 – 2·YART·Yobs + 2·YART·β·∆t – 2·Yobs·β·∆t  

= 2·zP
2·σe

2 + zP
2·σb

2·∆t2

 
(equation 7) 

Collecting the powers of ∆t : 

 ∆t2 ·(β2 – zP
2·σb

2) + 2·∆t·β·(YART  – Yobs) + (YART  – Yobs)2 – 2·zP
2·σe

2 = 0
  

 (equation 8) 

Solving this quadratic equation for ∆t, and keeping the smaller root: 
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 (equation 9) 

Rearranging, simplifying, and replacing ∆t with tnext – tobs finally gives the suitable 

time for scheduling the next measurement: 
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(equation 10) 

If the observation at time tnext does not reach the decision threshold YART, which is 

expected to occur with (1 – P) probability, the rule can be applied recursively and will 

estimate shorter and shorter intervals. Once the difference (Yobs – YART) becomes 

smaller than 2·zP·σe, this rule loses its usefulness, and either the Track-shot rule 

below or frequent CD4 monitoring become necessary. The Snap-shot rule is thus 

mainly designed for relatively high CD4 cell counts.  

 

  2 2 2 b e ∆t ⋅ + ⋅ σ σ 2 
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“Track-shot rule”: If multiple CD4 measurements have been performed in a 

subject, it may be worth using all those results to estimate the individual trajectory. A 

Bayesian approach can be used to combine individual observations with published 

population estimates. The overall likelihood Loverall of the subject’s specific slope bi, 

intercept ai and n individual measurements Yj is the product of the likelihoods of each 

term, given by the normal probability law applied to the deviations from 

corresponding expectations (assuming independence between ai, bi, and the εij ) : 
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After negative logarithmic transformation, the product on the right-hand side turns 

into a sum of squared deviations weighted by the corresponding inverse variances, 

corresponding to minus the log-likelihood. Thus, maximum likelihood estimates, bi 

and ai, for the subject’s specific slope and intercept can be found by minimizing the 

following weighted sum of squares: 
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This Bayesian approach is directly inspired by the method that Sheiner and colleagues 

introduced for interpreting serum digoxin concentrations [2]. The first two terms 

express the deviation of individual parameters from average population values, 

inversely weighted by their known dispersion in the population; the final sum of 

terms expresses the deviations of actual observations from the subject’s reconstructed 

individual curve, inversely weighted by the within-subject variability. We disregarded 

the correlation (ρab) between ai and bi, as this term had no significant effect on the 

calculations. Maximum likelihood values for bi and ai can be obtained by setting the 

first partial derivatives of the formula with respect to bi and ai equal to zero and 

solving the system. An equation very similar to equation 10 can then be used to 

determine the suitable time for scheduling the next measurement, i.e. the nearest 

likely time for a new observation to reach the threshold YART at a probability level P. 
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The value Yobs is replaced by Ypred = ai – bi · tobs and the term 2·σe
2 by (1 + 1/n) ·σe

2 

to account for the improvement in the precision in Ypred brought about by having n 

previous observations. If this rule is applied to a single observation it simply reduces 

to the Snap-shot rule, ignoring prior information about ai. As before, once the 

difference (Yobs – YART) becomes smaller than (1 + 1/n) ·zP·σe, this rule loses its 

usefulness and frequent CD4 monitoring becomes necessary. 

Both rules can be applied either using global population values for β and α or taking into 

account any characteristics that affect the CD4 trajectory, such as the viral load and age. 

The Track-shot rule can also be modified for a non-informative prior distribution of α (i.e. 

dropping the second term in eq. 6), to accommodate uncertainty about the true 

seroconversion date. This modification was tested as well. The parameter values (α, β, σa, 

σb, σe) were drawn from the literature review (Table 1 in the main article).  
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