Supplementary Text
Worst case performance of ExpandingGreedy
Recall that ExpandingGreedy maintains a partial cover W(V and the set of currently k-covered elements X(U. Initially W=((, X=(. In each iteration, the algorithm picks a node v(V that is adjacent to W and that covers the largest number of elements of U\X and adds v to the cover. By picking v adjacent to W, the connectivity of the cover is preserved.

ExpandingGreedy can give a solution that is Θ(|V|) times the optimum for MCC(k,l): Consider the example in Supplementary Figure 3. The smallest cover is {X,Y1,Z}. The algorithm will start from X as it provides the best initial cover of the elements. However, afterwards, in the worst case, the algorithm adds to the cover Y2,...,Yn before Y1 and finally Z are added. In this case the obtained cover size will be |V|, i.e., Θ (|V|) times the optimum.
In order to handle such scenarios more successfully, we implemented a look-ahead heuristic: in case of such ties, the neighborhood of the candidate nodes is explored and the node whose neighborhood provides the best coverage of uncovered elements is selected.

Other algorithms for solving MCC(k,l)

In addition to ExpandingGreedy, we developed several additional algorithms for the minimum connected set cover problem. These algorithms are described below.
ConnectingGreedy

We describe the algorithm for MCC(1,0) only. ConnectingGreedy initially ignores the connectivity constraints and uses the simple greedy algorithm [1] to find a small set cover X(V. It then augments this cover X with additional nodes in order to obtain a connected set cover, as follows: Initially Y=X. Let C be any connected component in the subgraph induced by Y. The algorithm randomly picks a node v(Y\C and adds to Y the nodes along a shortest path from Y to v (including v). This is repeated until Y is connected. When the algorithm halts Y is a proper CC(1,0): (a) it is a proper cover as it includes X; (b) it induces a connected component in G.
Recall that the diameter of G is the maximum length of a shortest path between a pair of nodes in V.
Claim: ConnectingGreedy guarantees an approximation ratio of O(Dlog(n)) for MCC(1,0), where D is the diameter of G.
Proof: Let Copt be an optimal solution to MCC(1,0) and let C* be an optimal solution to the regular (not connected) set cover problem. Clearly, |Copt|≥|C*|. Let X be the set of nodes obtained by the first phase of ConnectingGreey and let CCG be the final solution when it terminates. Then |CCG|(D|X| since connecting each two components in X requires at most D nodes. By the greedy approximation to the regular set cover problem it follows that |X|((ln(n)+1)|C*| and therefore |X|((ln(n)+1)|Copt|. In conclusion |CCG|(D|X|(D (ln(n)+1)|Copt|. ■
The CUSP algorithm for MCC(1,0)

We next describe an algorithm called Covering Using Shortest Paths (CUSP). We first give the algorithm for MCC(1,0) and then extend it for the general case. Roughly speaking, starting from an arbitrary node, the algorithm connects to it close nodes that cover different elements. For each node r the algorithm proceeds as follows. Denote by d(u,v) the shortest distance between nodes u and v in G(V,E). For every u(U, it finds P[r,u], a closest node to r that covers u: P[r,u]=argminw{d(r,w)|(w,u)(EB}. Let us denote by M[r,u] the distance from r to this node. The closest such nodes for all u(U can be found in O(|V|+|E|+|EB|) by building a BFS tree T rooted at r [2]. Now define Xr as the union of the paths in T from r to P[r,u] for every u(U. Xr is a proper CC(1,0): (a) it is a subtree of T and thus induces a connected component in G; (b) every u(U is covered by P[r,u]. The final solution is obtained by choosing the minimum cardinality Xr : X=argminv{|Xv|}.
Claim: CUSP gives an n-approximation for MCC(1,0).

Proof: Consider an optimal solution Copt and the solution Ccusp given by CUSP. Pick any node z(Copt. As Copt is a proper cover, for every u(U, it must contain at least one node wu for which (wu,u)(EB. Let wu* be such a node for which d(z,wu*) is maximal. As Copt induces a connected component in G and contains both z and wu*, it must also contain all the nodes on some path between z and wu*, and thus |Copt|≥d(z,wu*)+1=max{u(U}{d(z,wu)|(wu,u)(EB}+1 ≥ max{u(U}{M[z,u]}+1

Recall that Ccusp is the minimum cover among all Xr, and therefore |Ccusp|(|Xz|. Xz is a union of shortest paths from nodes for which M[z,u] is minimal. The number of nodes on every such path is not longer than maxu(U{M[z,u]}+1 and the number of paths is n. Hence, |Ccusp|(n((max{u(U}{M[z,u]} + 1). Joining the two bounds together we get |Ccusp|/|Copt|(n. ■

Note that n=|U| can be substantially smaller than |V|, as is the case, for example, in our biomedical application. In terms of computational complexity, each iteration of CUSP requires an execution of BFS, assigning to each node in V its level in the tree, and for each u(U its neighbor with the least level is found in O(|N(u)|). Hence, the total amount of work for each choice of r is O(|V|+|E|+|EB|) and the overall complexity is O(|V|(|V|+|E|+|EB|)). Note that it is not necessary to execute the algorithm from every root node: If x(U is an element covered by the least number of nodes, it suffices to run CUSP only from nodes that cover x.

The CUSP algorithm for MCC(k,l)

The algorithm described above can be generalized for k>1, as follows. Instead of finding a single node closest to r that covers the element u, the algorithm will compute distances (M[r,u]1,...,M[r,u]k) and pointers (P[r,u]1,...,P[r,u]k) to the k closest such nodes. This can be done by computing the distances from r to all the nodes in V, and then retrieving the k closest nodes, which can be solved, e.g., in O(k|V|) by repeated minimum finding or in O(|V|log|V|) by sorting. The cover is again obtained by uniting all the paths to all these nodes. This algorithm is readily generalized for MCC(k,l) where l>0. The only change required is that only paths to nodes covering the n-l elements for which maxqd(r,P[r,u]q), 1≤q≤k are the smallest enter the cover. Here too, it is not necessary to execute the algorithm from each r(V, but only from the l+1 nodes that cover elements from U'(U for which maxu'(U'|N(u')| is minimal.
Claim: the extended CUSP algorithm gives an k(n-l)-approximation for MCC(k,l).

Proof. Consider an optimal solution Copt and the solution Ccusp given by CUSP. Let Uopt, Ucusp(U be the sets of elements covered by Copt and Ccusp respectively (|Uopt|=|Ucusp|=n-l). Let Di[w,u] be the i-th smallest value in {d(w,v)|v(V, (v,u)(EB}. Let z be any node in Copt.
We first show that |Copt|≥ maxu(Uopt{Dk[z,u]+1}. As Copt is a proper cover, it must contain at least k nodes that cover each u(Uopt. Let us denote the set of these nodes Vu. Let wu*((uVu be a node for which d(z,wu*) is maximal. As Copt induces a connected component in G and contains both z and wu*, it must also contain all the nodes on some path between z and wu*, and thus: |Copt|≥d(z,wu*)+1=max{u(Uopt}max{v(Vu}{d(z,v)}+1≥maxu(Uopt{Dk[z,u]}+1.

We now add an upper bound on |Ccusp|: |Ccusp| (k(n-l) (max{u(Uopt}{Dk[z,u]}+1). Ccusp is the minimum cover over all Xr, and therefore |Ccusp|(X{z}. X{z} is a union of shortest paths to nodes covering n-l elements for which Dk[z,u] was minimal and therefore max{u(Ucusp}{Dk[z,u]}(max{u(Uopt}{Dk[z,u]}. The number of nodes on every shortest path is thus not more than max{u(Uopt}{Dk[z,u]}+1 and the number of paths is k(n-l).

Joining the two bounds together we obtain
|Ccusp| (k(n-l) [max{u(Ucusp}{Dk[z,u]} +1](k(n-l) [max{u(Uopt}{Dk[z,u]}+1] (k(n-l) |Copt|
Hence, the CUSP algorithm achieves an approximation ratio of k(n-l). ■
The CUSP* heuristic

We now describe a heuristic based on CUSP, called CUSP*. For each root r, it starts from a specific partial cover called a core - a set of (nodes that can be computed efficiently and has good coverage properties, and then completes the cover as CUSP does.

Let the total coverage of a subset V'(V be the total number of edges between V' and U in B. Given a BFS tree T from r, we define a (-core as a connected subtree T'=(V',E') rooted at r such that |V'|=(and the total coverage of V' is maximal. An optimal (-core can be found efficiently using dynamic programming, as follows. Let C[v,i] be the maximal total coverage of a connected subtree of T containing i nodes and rooted at v. C[v,i] is computed for each v(V,1(i((as follows. We first set C[v,1]=|N(v)| and C[v,i]=0 for i>1 for every leaf v of T. Then, if v has p children v'1,...,v'p in T and 1(i((: C[v,i]=|N(v)|+max{(i1,...,ip)}{(1(j(pC[vj,ij]|(jij=i-1. The computation of all C[v,i] values is done by a post-order traversal of T. The optimal value is C[r, (] and the corresponding subtree is reconstructed by maintaining the optimizing subsets for each v and i. The problem of computing max{(i1,...,ip)}{(1(j(pC[vj,ij]|(jij=i-1} is an instance of the knapsack problem and can be computed in O((p) for each v [3]. The overall complexity of finding a (-core is thus O((2|V|).

For every root node r, CUSP* computes C[r,(] and obtains the corresponding (-core Ccore using traceback. The set Ccore is contracted in G into a single node x and the edges between x and U are removed from B. We then compute R=(R1,...,Rn) where Ri = max{ 0 , k - |{(v,u)(EB|v(Ccore}|}. R1,...,Rn are the residual coverage requirements of the elements. The rest of the cover is obtained using CUSP. The best cover over all root choices is the solution.
Note that the notion of total coverage deliberately ignores the specific coverage of each node in U by the core and does not consider possible outliers, in order to be able to compute the core efficiently. Hence it should be applied with (≤k, to allow the CUSP algorithm to complete the cover more carefully. In our implementation we first compute a k-core. Let cm be the maximum coverage of any element by the nodes in that core. If cm<k, we then extend this core by computing a (k-cm)-core on the contracted graph. We repeat the extension until at least one element is covered k times. We then proceed with applying the CUSP algorithm to complete the residual cover.
Evaluating the performance the algorithms
We applied the different algorithms that we developed for MCC(k,l) to each of the 13 datasets described in the main text and compared the sizes of the obtained covers. As each dataset is expected to give rise to covers of different sizes, for each dataset we ranked the size of the covers found by all algorithms. Mid-ranking were used in case of ties. We ran each algorithm with k=5, 10, 15, …, 40, ranked the solutions for each k according to the cover size and used the average rank as a goodness of fit measure. As shown in Supplementary Figure 1, the smallest covers were obtained when using the ExpandingGreedy algorithm, with further improvement when using the ExtendingGreedy*2 heuristic. Thus, despite the fact that this algorithm has a poor worst case performance, on biological data it performs best than algorithms with provable theoretical performance
1. Johnson D. Approximation algorithms for combinatorial problems; 1973. ACM New York, NY, USA. pp. 38-49.

2. Cormen TH (2009) Introduction to algorithms. Cambridge, Mass.: MIT Press. xix, 1292 p. p.

3. Lawler EL (1976) Combinatorial optimization : networks and matroids. New York: Holt, Rinehart and Winston. x, 374 p. p.

