Supplementary Data for (Text S1.)
Identifying molecular effects of diet through systems biology : Influence of herring diet on sterol metabolism and protein turnover in mice 
I. Nookaew1,#, B.G. Gabrielsson2,#, A. Holmäng3, A.-S. Sandberg2, J. Nielsen1 

1 Life sciences/Systems Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

2 Life sciences/Food Science, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

3 Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, SE-405 30, Gothenburg, Sweden

# These authors contributed equally to this work
*Corresponding author:

Professor Jens Nielsen

Phone: +46 (0) 31 772 3804 , Fax : +46 (0) 31 772 3801  
nielsenj@chalmers.se
Supplementary data 1 – Animal selection for the experiment and physiological characteristics
Two of the most commonly studied mouse models of atherosclerosis are the apolipoprotein E-deficient (ApoE-/-) mice [1] and the low density lipoprotein receptor-deficient (Ldlr-/-) mice [2]. These mice mainly differ in that the Ldlr-/- mouse has a dietary dependence on the development of atherosclerosis [3], whereas the ApoE-/- mouse spontaneously develops plaques although increased levels of dietary cholesterol enhances the process [4]. Furthermore, the Ldlr-/-, but not the ApoE-/-, mouse, is susceptible to diet-induced obesity with concomitant insulin resistance [5,6] and as such mimics the clinical situation in the Westernized world. 

Epidemiological studies show that a high dietary intake of fish reduces cardiovascular disease (CVD) [7], and these effects are usually attributed to the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) [8] present in fish. Indeed, previous studies show that dietary LC n-3 PUFAs reduced plaque formation and hepatic steatosis in the Ldlr-/- mouse model [9,10]. However, the effects of intake of whole fish fillets on risk factors associated to CVD have previously not been investigated in mice. In the rat, fish protein reduced blood lipid levels, and also affected hepatic genes involved in cholesterol metabolism [11]. Furthermore, a recent clinical study showed that a supplement of LC n-3 PUFAs combined with taurine was more efficient in lowering blood lipid levels than LC n-3 PUFAs alone [12].

In this study, Ldlr-/- male mice were given a 16-week high fat/high sucrose diet, supplemented with either minced herring fillets or minced beef, to identify metabolic pathways that were differentially affected in three tissues important for whole body glucose and lipid homeostasis; liver, skeletal muscle and WAT.

Supplementary data 2 – Analysis of transcriptome data
Dimensionality reduction and clustering
Primary analyses of the transcriptome data was performed and visualized by an unsupervised method of Singular Value Decomposition (SVD). It is possible to investigate the intrinsic variability of the high dimensional transcriptome data among the three tissues in response to the different diets with the dimensionality reduction capability of SVD, based on left eigenvectors called eigenarrays [13]. SVD was performed on the matrix of the transcriptome data consisting of ~26,000 rows (transcripts) and 18 columns (arrays). The first three eigenarray components were used to illustrate the sample discrimination in a pseudo-three dimension plot (the third dimension is presented by the dot size). Furthermore, based on the significant level Q-value at a cut-off of 0.05, unsupervised hierarchical clustering by complete linkage method was performed on the group of significant expressed genes to visualize the consistency of the genes to each group of experiments.  Figure S1 panel A and B illustrate that the first 3 eigen components capture most of the variance in the data set as indicated by the eigen values and the loading scores. Unsupervised hierarchical clustering of the group of significant genes indicated that tissue and diet are well discriminated as shown in Figure S1 panel C. 

Statistical analysis of gene expression

2-Way ANOVA was formulated to evaluate the differentially expressed genes with respect to tissue factor (WAT, liver and muscle) and diet factor (beef and herring fed) as well as the interaction of the two factors. As the influence of tissue factor on gene expression is greater than the influence of diet as noticed by dimensionality reduction analysis, evaluation of significant level of genes expression between beef-fed and herring-fed mice in the specific tissues was performed separately using linear models together with empirical Bayes [14]. The calculated p-values of all statistical analyses were transformed to Q-value by correcting for multiple testing using the method of Benjamini and Hochberg [15]. Changed gene expression with a Q-value < 0.05 was considered significant.
The distribution of Q-values derived from the 2-way ANOVA is illustrated in Figure S2Aand it is clearly seen that the tissue factor is the dominant factor in the system. The interaction between the tissue and diet factors also influences the system, and the effect of diet is therefore best captured by considering differential expression between the two diets for each specific tissue. The distribution of Q-values derived from a student t-test for the specific tissues is shown in Figure 2B     

Supplemenatry data 3 – Integrated analysis
Integrated analysis of transcriptome data and biological networks
To uncover the biological processes adaptations in response to the diet, the transcriptome data were analyzed in the context of biological networks using the reporter algorithm 
 ADDIN EN.CITE 

[16,17]
. For this, we considered three kinds of well annotatated biological information: gene ontologies (GO) 
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[18]
, a genome-scale metabolic model (GSMM) [19] and biological evidences from the Reactome database [20]. The three different types of biological information were transformed to bipartite graphs, i.e. graphs with GO-gene interactions, metabolite-gene interactions and reactome-gene interactions. The Q-values for each gene were then mapped on the graphs and the reporter algorithm was applied to indentify features that were significantly changed in response to the different diets.

The results from this integrated analysis of the three biological networks are given in supplementary file 1. The results contain a large number of neighbors for each feature. The reporter p-values, which are derived from the integration of the networks and the Q-values, were calculated for all three types of features.  

Multiways comparison and visualization
According to the reporter algorithm a feature [image: image2.png]fi
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members of transcription levels, whose normalized expression values are represented as a vector of transription levels [image: image6.png]Tf



. Considering, a specific experiment [image: image8.png]


, the empirical cummulative distribution function of the vector is expressed as (1)      
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The total expression score [image: image11.png]X,
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 is then estimated by the difference between the integral of the uniform distribution [image: image15.png]u(T)



 and the integral of the empirical cummulative distribution function in the interval of normalized expression values as specified by (2)     
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Finally the expression score is normalized with the mean [image: image18.png]Byl i



 and the standard deviation [image: image20.png]7,



 to give what we call the X-score ([image: image22.png]


 given as (3)
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The X-scores are used to indicate the significance of the features. The results were plotted as heatmap for visualization. 
The results of the integrated analysis on GO-terms for the different tissues were illustrated in Figure S3, It is recognized that GO catagories associated with specific tissues are identified using this approach, which validates the approach. For example, the GOs that are related with cholesterol and lipid processes and functions are dominant in liver as shown in the blue box of Figure S3 panel A and C, and the GOs that are associated with muscle are found as having highest expression in the muscle.

The additional results of integrated analysis of GO terms in response to diet in the three tissues are lillustrated in Figure S4 in a similar way as Figure 2.
Enrichment analysis of transcription factor motifs and microRNA targets             
The information of  transcription factor (TF) binding sites motif targets, which is derived from vertebrate transcription factors binding sites from position specific scoring matrix (PSSM) from TRANSFAC version 9.4, were retrieved from ECRbase (version 102) [21]. The microRNA targets predictions of mouse were retrieved and compiled from 9 different algorithms, i.e. TargetScan (version 5.1) 
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[22,23]
, miRanda (release Sept2008) 
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[24,25]
, PITA (version 6) [26], microcosm (vesion 5) [27], Pictar (release March2007) [28], DIANA-microT (version 3) [29], EIMMo (vesion 3) [30] miRDB (version 3) [31], RNA22 (release May2008) 
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[32]
. For each group of genes to be evaluated for TF and microRNA enrichment we evaluated their significant value derived from a one tail Fisher’s exact test. With a p-value cut-off < 0.001, all significant TF and microRNA were drawn as half heatmap of pair wise co-occurrence to illustrate the possible relationships of binding motifs. The diagonal of the heatmap represents the occurrence of each F or microRNA in the tested group. The selected consensus motifs were drawn as logo plot [33] by using SeqLogo package from bioconductor version 2.4.    
 Gene co-expression network module analysis
The integration of transcriptome data over the three tissues is an important analysis to reveal whether the key metabolic effects are coordinated in a multi-tissue fashion. To evaluated this based on the influence of diet, the gene that have Qvalue < 0.075 derived from a 2-way ANOVA (see Supplementary data 2) were chosen for this analysis. The gene co-expression modules were identified using the weighted gene co-expression network analysis (WGCNA) frame work 
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[34]
 that is available in the R package (named WCGNA) [35]. To identify the modules, the static tree cut method with a minimum size of the module being 40 nodes was performed. The result of the analysis is shown as a heatmap of topological overlap matrix indicating co-expression modules.

In Figure S5, it is clearly seen that the strongest connected gene co-expression module among the three tissues derived from the diet effect are the blue module. The gene members in the blue module were further evaluated of their biological roles by modular enrichment analysis of GO and biological pathways retrieved from KEGG, Reactome and BioCarta. The analysis was performed and visualized using Cytoscape [36] equipped with ClueGO pluging [37].  

Supplementary data 4 – Additional results 

Circular mapping plot of gene expression
The logarithm of Q-vales of all transcripts were sorted according to their loci arrangement then plotted in clock-wise direction. O is the beginning point of the plot and refers to the first transcript of chromosome 1. The area between I and II is belong to the transcripts located on chromosome2 (II) as shown in  Figure S6.   
Enrichment of the microRNAs in liver implies their role in lipid/sterol metabolism 
According to Figure 3D, mmu-miR-103 has the most frequent binding target (occurrence score > 0.5 with a p-value = 1.99e-4). The mmu-miR-103 is encoded from introns of the pantothenate kinase (a key enzyme of Coenzyme A biosynthesis) genes Pank2 and Pank3. It has a microRNA paralogue named mmu-miR-107 (slightly significant in the enrichment analysis with a p-value = 3.82e-3, see Supplementary file 1), which is encoded from an intron of Pank1. These microRNAs are highly conserved in vertebrates and also have high potential role in the inhibition of lipid biosynthesis and metabolism [38]. To explore the effect of mmu-miR-103 and mmu-miR-107 in liver, cumulative distributions of changes in the average transcript levels of herring-fed mice versus beef-fed mice is illustrated in Figure S7.

The efficiency of mmu-miR-103/7 on the transcriptional down-regulation of the genes containing the site on their UTR(s) is significantly observed in herring-fed mice with a p-value < 5e-10 using a one-side KS test (p-value = 3.88e-8 and 2.3e-5 when target site of mmu-miR-103 and mmu-miR-107 is separately considered, respectively). This implies that mmu-miR-103/7 contributes to reduce expression of genes involved in cholesterol and triglyceride biosynthetic in livers from the herring-fed mice, which could be a reason to explain the reduced plasma triglycerides and cholesterol levels. Recently, Li et al reported that mmu-miR-103, mmu-miR-107 as well as mmu-miR-34a (also found in our enrichment analysis, see Figure 3D), are associated with changes in hepatic energy and lipid related processes 
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[39]
.          
Enrichment analysis of DNA motifs of transcription factors and microRNA in muscle

Genes, related with the reporter GO terms; muscle contraction and oxidative phosphorylation(shown in Figure 4), were analyzed for enrichment of transcription factors and microRNAs. The heat maps shows identified transcription factors and microRNAs and their.  Figure S8 illustrates the heatmap of identified transcription factors and microRNAs, and their co-occurrence.
From the enrichment analysis as illustrated in Figure S7, the consensus binding sites of transcription factor Nrf1, Foxn1, Egr1 and Elk1 were overrepresented in these analyses. Nrf1 is a key transcription activator for respiratory and mitochondria biogenesis being induced by Ppargc1a (PGC-1a) in muscle 
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[40]
. The co-activator also works in the combination with Mef2 transcription factor to switch to type I fibers 
 ADDIN EN.CITE 

[40]
. From the analysis, MEF2_02 binding site, which belong to Mef2, is border-line significant, p-value = 0.0066, using a cut-off of p<0.001 (see Supplementary file). Foxn1, Erg1 and Elk1 have been reported to influence skeletal muscle development 
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[41,42,43]
.
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