
Supporting Text

Simplified Mass Action Kinetics of PCR

The Polymerase Chain Reaction (PCR) is a commonly used method in biotechnology for
amplifying DNA using a thermostable DNA polymerase. Quantitative PCR (qPCR) is
merely PCR performed with a dye that indicates the concentration of DNA in real-time.
The typical three-step PCR cycle is shown in figure 1.
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Figure 1: The PCR cycle. During the melting step, double-stranded DNA (D) melts to single
strands S1 and S2. During the annealing step, primers P1 and P2 anneal to S1 and S2 to form
primer-strand complexes PS1 and PS2. DNA polymerase (POL) also complexes with PS1 and
PS2 during the annealing step to form primer-strand-enzyme complexes PSE1 and PSE2. During
elongation, DNA polymerase extends primers into a new DNA strand, using the long strand as a
template.

The mechanistic model we have developed for fitting qPCR data is derived from the chem-
ical kinetics involved in the production of double-stranded DNA during the annealing and
elongation steps of a PCR protocol. These steps of facilitate all reactions involved in the
production of double-stranded DNA from single-stranded DNA, as shown below:
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where S1 and S2 are the two single-strands of DNA, P1 and P2 are their associated primers,
E is DNA polymerase, PS1 and PS2 are primer-strand complexes, PSE1 and PSE2 are
primer-strand-enzyme complexes, and D is double-stranded DNA. The model depicted above
is a simplified version of previously proposed mechanistic models of PCR [1, 2]. Simulating
many cycles of this model, (with complete melting of double-stranded DNA at each cycle),
results in a curve with the characteristic sigmoidal shape of qPCR data. In such simulations,
reaction-efficiency steadily declines due to the competition of the reannealing reaction (3)
with the primer hybridization reaction (1), and the plateau-phase is brought on by depletion
of primer. Attempting to fit qPCR data with this model, however, results in overfitting the
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data because the model contains too many kinetic rate constants to be fitted. Thus, it has
been very difficult to meaningfully fit qPCR data with a mechanistic model of PCR.
We have employed many simplifying assumptions to arrive at a simple model that captures
the essential dynamics of PCR. The first simplifying assumption used is that the two primers
and the two complementary DNA strands can be treated identically. The reaction thus
simplifies to:
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Here, a limitation is imposed on the model that qPCR data to be fitted is restricted to data
obtained before DNA concentration builds up to the level of primer concentration. This
restriction justifies the assumption that primer and enzyme are in great excess and that
changes in their concentration are minimal and do not affect the dynamics of the reaction
during a cycle. Thus, concentration of enzyme and primer do not need to be considered in
the production of the PSE complex and this process can be treated as first-order in strand
concentration, resulting in:
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The kinetics of the elongation step are slow relative to the kinetics of PSE complex formation
and of reannealing. It can therefore be assumed that PSE complex formation competes with
strand reannealing, but that any PSE complex that forms is converted to DNA by the slow
action of DNA polymerase. The final form of the reaction is thus:
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Derivation of MAK2

By simplifying the model of PCR to one with only two species, S and D, the mathemati-
cal representation of the model contains only two differential equations that can be solved
analytically:
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To solve for S(t) in (11), we first recognize the equation as a Bernoulli equation and divide
both sides by S2 and rearrange:
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We now define variable v as:
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Substituting v for S, we obtain a linear differential equation in v:
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Multiplying both sides by −e−kat, we obtain:
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Recognizing that (ve−kat)′ = v′e−kat − kave
−kat, we obtain:
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Integrating (17) yields:
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Multiplying by ekat yields:
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Substituting back for S(t) yields:
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Applying the initial boundary condition, S(0) = S0 yields:
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Solving for c yields:
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Plugging (22) into (20), we obtain the final formula for S(t):
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We now attempt to solve for D(t). We begin by rearranging (11) to obtain:
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Plugging (24) into (12) we obtain:
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Plugging (23) in for S yields the following expression:∫ t
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We now define variable u as:
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Plugging (30) into (26) yields:
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The equations up to this point have been for following the changes in concentration of single-
and double-stranded DNA during a single cycle. Assuming that reactions (9) and (10) go to
completion, an expression is obtained for double-stranded DNA at the end of any cycle, n:
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Assuming that all double-stranded DNA melts to single-stranded DNA during the high-
temperature step of PCR, S0 can be set to 2Dn−1, resulting in:

Dn = Dn−1 +
ka ln(1 + 2kbDn−1

ka
)

2kb
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The final expression for the model is obtained by substituting a constant, k, for the ratio ka

2kb

to obtain:

Dn = Dn−1 + k ln(1 +
Dn−1

k
) (34)

The final expression, (34), is a recursive model in which the concentration of double-stranded
DNA at the end of any cycle is dependent only on the amount of double-stranded DNA at
the end of the previous cycle and the value of the constant k, a parameter that characterizes
the dynamics of the PCR reaction. This is the model, MAK2, used to model PCR.
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