Supporting Information File S1

Statistical analysis of results presented in Fig. 1 B:

In order to confirm that Assay 1 estimates the male/female ratio correctly and that Assay 2 and Assay 3 differ significantly from Assay 1, we tested if the regression curve of Assay 1 is coincident (has the same slope and intercept) with the regression curve of Assay 2 or Assay 3. In a first step the variances σ^2 of the three different data sets are tested for equality by computing the residual variances using the following formula:

$$\hat{S}^{2} = \frac{1}{n-2} \bullet \sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i} \right)^{2} \quad \text{with} \quad \hat{y}_{i} = empirical \ regression \ line \ \hat{a} + \hat{b} \bullet x_{i}$$

Table with data sets of the three assays and the calculated residual variances S

(see also Fig. 1 B)

percentage	Assay 1	Assay 2	Assay 3
of male	Dys14/18S	SRY/c-myc	SRY/18S
DINA	[%]	[%]	[%]
0	0	0	0
5	9.488	16.764	22.517
10	14.523	17.962	47.437
20	25.259	84.667	77.489
30	36.821	92.005	107.761
50	52.284	141.951	310.609
\hat{S}^2	24.390	212.520	1654.429

For verifying the null hypothesis that the residual variance of the Assay 1 data set is equal to the residual variance of the Assay 2 or Assay 3 data sets (H₀: $\sigma_1^2 = \sigma_2^2$ or H₀: $\sigma_1^2 = \sigma_3^2$), the two-tailed *F*-Test is used. The test can be carried out by dividing the larger residual variance \hat{s}_1^2 by the smaller residual variance \hat{s}_2^2 :

$$f = \frac{\hat{S}_{1}^{2}}{\hat{S}_{2}^{2}}$$
 with (S₁≥S₂)

Based on the 1- $\alpha/2$ percentage point in the F-distribution table with $\alpha = 0.05$ (i.e., corresponding to a confidence level of 95%) and $m_1 = n_1-2$ and $m_2 = n_2 - 2$ degrees of freedom, the null hypothesis is rejected for $f \ge F_{m_1;m_2;1-\alpha/2}$. In this case: $F_{m_1;m_2;1-\alpha/2} = 9.6$. The null hypothesis is accepted when $f \le F_{m_1;m_2;1-\alpha/2}$. The residual variances of the data set from Assay 1 and those from Assay 3 differ significantly because $f \ge F_{m_1;m_2;1-\alpha/2} = 67.81 \ge 9.6$, whereas the null hypothesis for the comparison of Assay 1 and Assay 2 can be accepted: $f \le F_{m_1;m_2;1-\alpha/2} = 8.71 \le 9.6$.

As Assay 1 and Assay 2 do not differ significantly in terms of their respective residual variances, we tested if the regression coefficients (i.e., slopes) \hat{b}_1 and \hat{b}_2 of these 2 assays are significantly different. To verify the null hypothesis that \hat{b}_1 and \hat{b}_2 are equal the following formulas can be used:

$$t_r^{(b)} = \frac{\hat{b}^{(1)} - \hat{b}^{(2)}}{\hat{S}^* \times \sqrt{\frac{1}{(n_1 - 1) \times s_x^2} + \frac{1}{(n_2 - 1) \times s_x^2}}} \qquad \text{with } \hat{S}^* = \sqrt{\frac{(n_1 - 2) \times \hat{S}_1 + (n_2 - 2) \times \hat{S}_2}{n_1 + n_2 - 4}}$$

Table with calculated values for variances \hat{S}^2 , \hat{S}^* , s_x^2 and slope \hat{b}

values	Assay 1	Assay 2	
\hat{S}^2	24.390	212.520	
\hat{b}	1.0254	2.9299	
\hat{s}^{*}	10.88		
s_x^2	344.167	344.167	

Referring to the 1- $\alpha/2$ percentage point (95% level of confidence), based on $m_1 = n_1-2$ and $m_2 = n_2 - 2$ degrees of freedom in the tabulated T distribution, the results (slope) of Assay 2 differ significantly from the results (slope) of Assay 1. The t-value for the comparison of

Assay 1 and Assay 2 is about $t_r^{(b)} = 5.13$ whereas the $t_{m;1-\alpha/2}$ determined for $m = n_1 + n_2 - 4$ degrees of freedom and a 95% confidence level (1- $\alpha/2$ percentage point) is about 2.3. Therefore is $t_r^{(b)} \ge t_{m;1-\alpha/2}$ and the null hypothesis is rejected.

Based on this analysis, it is determined that the results obtained by Assay 2 and Assay 3 differ significantly from the results obtained by Assay 1.