Supporting Information File S1

Statistical analysis of results presented in Fig. 1 B:

In order to confirm that Assay 1 estimates the male/female ratio correctly and that Assay 2 and Assay 3 differ significantly from Assay 1, we tested if the regression curve of Assay 1 is coincident (has the same slope and intercept) with the regression curve of Assay 2 or Assay 3. In a first step the variances σ^{2} of the three different data sets are tested for equality by computing the residual variances using the following formula:
$\hat{S}^{2}=\frac{1}{n-2} \bullet \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \quad$ with $\quad \hat{y}_{i}=$ empirical regression line $\hat{a}+\hat{b} \bullet x_{i}$

Table with data sets of the three assays and the calculated residual variances \hat{S}^{2} (see also Fig. 1 B)

percentage of male DNA	Assay 1	Assay 2	Assay 3
	Dys14/18S [\%]	SRY/c-myc [\%]	SRY/18S [\%]
0	0	0	0
5	9.488	16.764	22.517
10	14.523	17.962	47.437
20	25.259	84.667	77.489
30	36.821	92.005	107.761
50	52.284	141.951	310.609
\hat{S}^{2}	24.390	212.520	1654.429

For verifying the null hypothesis that the residual variance of the Assay 1 data set is equal to the residual variance of the Assay 2 or Assay 3 data sets $\left(H_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}\right.$ or $\left.H_{0}: \sigma_{1}{ }^{2}=\sigma_{3}{ }^{2}\right)$, the two-tailed F-Test is used. The test can be carried out by dividing the larger residual variance \hat{S}_{1}^{2} by the smaller residual variance \hat{S}_{2}^{2} :

$$
f=\frac{\hat{S}_{1}^{2}}{\hat{S}_{2}^{2}} \quad \text { with }\left(\mathrm{S}_{1} \geq \mathrm{S}_{2}\right)
$$

Based on the $1-\alpha / 2$ percentage point in the F -distribution table with $\alpha=0.05$ (i.e., corresponding to a confidence level of 95%) and $m_{1}=n_{1}-2$ and $m_{2}=n_{2}-2$ degrees of freedom, the null hypothesis is rejected for $f \geq F_{m_{i} ; m_{2} ; 1-\alpha / 2}$. In this case: $F_{m_{1} ; m_{2} ; 1-\alpha / 2}=9.6$. The null hypothesis is accepted when $f \leq F_{m_{1} ; m_{2} ; 1-\alpha / 2}$. The residual variances of the data set from Assay 1 and those from Assay 3 differ significantly because $f \geq F_{m_{1} ; m_{2} ; 1-\alpha / 2}=67.81 \geq 9.6$, whereas the null hypothesis for the comparison of Assay 1 and Assay 2 can be accepted: $f \leq F_{m_{1} ; m_{2} ; 1-\alpha / 2}=8.71 \leq 9.6$.

As Assay 1 and Assay 2 do not differ significantly in terms of their respective residual variances, we tested if the regression coefficients (i.e., slopes) \hat{b}_{1} and \hat{b}_{2} of these 2 assays are significantly different. To verify the null hypothesis that b_{1} and b_{2} are equal the following formulas can be used:
$t_{r}^{(b)}=\frac{\hat{b}^{(1)}-\hat{b}^{(2)}}{\hat{S}^{*} \times \sqrt{\frac{1}{\left(n_{1}-1\right) \times s_{x}^{2}}+\frac{1}{\left(n_{2}-1\right) \times s_{x}^{2}}}}$
with $\hat{S}^{*}=\sqrt{\frac{\left(n_{1}-2\right) \times \hat{S}_{1}^{2}+\left(n_{2}-2\right) \times \hat{S}_{2}^{2}}{n_{1}+n_{2}-4}}$

Table with calculated values for variances $\hat{S}^{2}, \hat{S}^{*}, s_{x}^{2}$ and slope \hat{b}

values	Assay 1	Assay 2
\hat{S}^{2}	24.390	212.520
\hat{b}	1.0254	2.9299
\hat{S}^{*}	10.88	
s_{x}^{2}	344.167	344.167

Referring to the $1-\alpha / 2$ percentage point (95% level of confidence), based on $m_{1}=n_{1}-2$ and $\mathrm{m}_{2}=\mathrm{n}_{2}-2$ degrees of freedom in the tabulated T distribution, the results (slope) of Assay 2 differ significantly from the results (slope) of Assay 1. The t-value for the comparison of

Assay 1 and Assay 2 is about $t_{r}^{(b)}=5.13$ whereas the $t_{m ; 1-\alpha / 2}$ determined for $\mathrm{m}=\mathrm{n}_{1}+\mathrm{n}_{2}-4$ degrees of freedom and a 95% confidence level ($1-\alpha / 2$ percentage point) is about 2.3.

Therefore is $t_{r}^{(b)} \geq t_{m ; 1-\alpha / 2}$ and the null hypothesis is rejected.
Based on this analysis, it is determined that the results obtained by Assay 2 and Assay 3 differ significantly from the results obtained by Assay 1.

