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1. Mathematical results

The mathematical properties of model (1) are analyzed completely [4]. The analyses

are divisible into three situations related to the vaccination rate as follows.

(a) Before vaccination program: p = 0

If the prevalence rate of vaccination program is p = 0, then model (1) has the

following three possible equilibria:

En0 = (Xn0, 0, 0, 0), where Xn0 =
c

b
;

Ens = (Xns, 0, Y ns, 0), where Xns =
b + my

ω
, Y ns =

c − bXns

ωXns
;

Enr = (Xnr, 0, 0, Znr), where Xnr =
b + mz

ϕ
, Znr =

c − bXnr

ϕXnr
.

It also has the following basic and invasion reproductive numbers:

Rns =
ω

b + my

Xn0, R̄ns =
ω

b + my

Xnr, Rnr =
ϕ

b + mz

Xn0, R̄nr =
ϕ

b + mz

Xns.

Here the left superscript “n” means “p = 0”, the right superscripts “0”, “s”, and

“r” respectively mean the disease-free equilibrium, vaccine-sensitive strain existing

equilibrium, and vaccine-resistant strain existing equilibrium.

The basic reproductive number for vaccine-sensitive (vaccine-resistant) strain

Rns (Rnr) means an expected number of new infectious cases before the spread

of any strain among birds [1] and the invasion reproductive numbers for vaccine-

sensitive (vaccine-resistant) strain R̄ns (R̄nr) means the expected number of new

infectious cases after a spread of vaccine-resistant (vaccine-sensitive) strain among

birds [4].

We remark that Rns > Rnr (Rnr > Rns) is equivalent to R̄nr < 1 (R̄ns < 1).

The dynamics are determined completely by the basic reproductive numbers Rns

and Rnr [2, 4].

Theorem 1. (i) If Rns ≤ 1 and Rnr ≤ 1, then En0 is globally asymptotically

stable (GAS), which means that the orbit converges to the equilibrium as t → ∞
for arbitrary initial points.

(ii) If Rns > 1 and R̄nr < 1, then Ens is GAS.

(iii) If Rnr > 1 and R̄ns < 1, then Enr is GAS.

In fact, R̄nsR̄nr = 1 and Theorem 1 includes all cases. The proofs of this theorem

are given in [2].
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(b) Complete prevalence of vaccination program: p = 1

If the prevalence rate of vaccination program is p = 1, then model (1) has the

following two possible equilibria:

Ec0 = (0, V c0, 0, 0), where V c0 =
c

b
;

Ecr = (0, V cr, 0, Zcr), where V cr =
b + mz

σϕ
, Zcr =

c − bV cr

σϕV cr
;

and the following basic reproductive number

Rcr =
σϕ

b + mz

V c0.

Here the left superscript “c” means “p = 1”, the right superscript “0” means disease-

free equilibrium, and “r” means vaccine-resistant strain existing equilibrium.

The dynamical properties are given by the following theorems.

Theorem 2. (i) If Rcr ≤ 1, then Ec0 is GAS.

(ii) If Rcr > 1, then Ecr is GAS.

The proofs of these theorems are presented in [3, 4].

(c) Incomplete prevalence of vaccination program: 0 < p < 1

If the prevalence rate of vaccination program is 0 < p < 1, then model (1) has the

following four possible equilibria:

Ei0 = (X i0, V i0, 0, 0), where X i0 =
(1 − p)c

b
, V i0 =

pc

b
;

Eis = (X is, V is, Y is, 0), where X is =
b + my

ω
, V is =

pc

b
, Y is =

(1 − p)c − bX is

ωX is
;

Eir = (X ir, V ir, 0, Zir), where X ir =
(1 − p)c

b + ϕZir
, V ir =

pc

b + σϕZir
.

In addition, Zir is the unique root of the following equations:

ϕ(1 − p)c

b + ϕZ
+

σϕpc

b + σϕZ
= b + mz.

Ei+ = (X i+, V i+, Y i+, Z i+), where X i+ =
b + my

ω
, V i+ =

1

σ

(
b + mz

ϕ
− b + my

ω

)
,

Y i+ =
1

ω

{
(1 − p)c − bX i+

X i+
− ϕZi+

}
, Zi+ =

pc − bV i+

σϕV i+
.
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The following are basic and invasion reproductive numbers:

Ris =
ω

b + my

X i0, R̄is =
ω

b + my

X ir,

Rir =
ϕ

b + mz

X i0 +
σϕ

b + mz

V i0, R̄ir =
ϕ

b + mz

X is +
σϕ

b + mz

V is.

Therein, the left superscripts “i” means “0 < p < 1”, the right superscripts “0”,

“s”, “r”, and “+”, respectively signify the disease-free equilibrium, vaccine-sensitive

strain existing equilibrium, vaccine-resistant strain existing equilibrium, and the

both-strains-existing equilibrium. In fact, these basic and invasion reproductive

numbers depend on the prevalence rate of vaccination programs.

The dynamical properties are given by the following theorems.

Theorem 3. (i) If Ris ≤ 1 and Rir ≤ 1, then Ei0 is GAS.

(ii) If Ris > 1 and R̄ir ≤ 1, then Eis is GAS.

(iii) If Rir > 1 and R̄is ≤ 1, then Eir is GAS.

(iv) If R̄is > 1 and R̄ir > 1, then Ei+ is GAS.

Here, we must note that the relation between these reproductive numbers; R̄is <

1 < Ris and R̄ir < 1 < Rir can not hold simultaneously (the relation is provable

directly by tedious and complex analysis, but it was clear in Theorem 3 ). Therefore,

Theorem 3 includes all cases. The proofs of this theorem are given in [4].

2. Evaluation of the effects of a vaccination program

We investigate how the vaccination affects the total number of infected individuals

at each equilibrium (i.e., the final size of the epidemic). We differentiate the to-

tal number of infected individuals at Eis with respect to a prevalence rate of the

vaccination program p as
dY is

dp
= − c

ωX is
< 0.

This implies that increasing the prevalence rate decreases the total number of in-

fected individuals (the vaccination is effective).

The differentiation of the total number at Eir with respect to p is the following:

dZir

dp
=

−bcϕ(1 − σ)√
{σϕ2c − bϕ(b + mz)(σ + 1)}2 − 4σϕ2(b + mz)b{b2 + mzb − cϕ(1 − p) − σϕpc}

< 0,

d2Zir

dp2
=

−2σϕ2(b + mz)

(
dZir

dp

)2

√
{σϕ2c − bϕ(b + mz)(σ + 1)}2 − 4σϕ2(b + mz)b{b2 + mzb − cϕ(1 − p) − σϕpc}

< 0.
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The first equation implies that increasing the prevalence rate decreases the total

number of infected individuals. The second equation means that the effect of vacci-

nation becomes stronger as p increases.

The differentiation of the numbers of infected individuals with vaccine-sensitive

and vaccine-resistant strain at Ei+ with respect to p are as follows:

dY i+

dp
= − c

ω

(
1

X i+
+

1

σV i+

)
< 0,

dZi+

dp
=

c

σϕV i+
> 0.

Therefore, increasing the prevalence rate decreases the number of infected individu-

als with the vaccine-sensitive strain but increases the number of infected individuals

with the vaccine-resistant strain. Furthermore, differentiation of the total number

of infected individuals is given by the following equation:

d(Y i+ + Zi+)

dp
=

cω(my − mz)

(b + my){ω(b + mz) − ϕ(b + my)}
.

Because we assume that R̄nr < 1, we have the following relations between the effect

of vaccination and the virulence of vaccine-sensitive and vaccine-resistant strain:

d(Y i+ + Zi+)

dp
> 0 ⇐⇒ my > mz,

d(Y i+ + Zi+)

dp
= 0 ⇐⇒ my = mz,

d(Y i+ + Zi+)

dp
< 0 ⇐⇒ my < mz.

These imply that the virulence of each strain plays an important role in the effec-

tiveness of the vaccination program (from the above mathematical analysis, we need

not perform a sensitivity analysis of the effect of the vaccination program).

3. Impact of loss of protection effectiveness of vaccination

We investigate the impact of the loss of the protection on the change of the final

size of the epidemic over the vaccination prevalence. Our basic assumptions are that

Rns > 1, Rnr > 1, and that R̄nr < 1.

First, we consider the case in which Rcr > 1. In fact, Ris and R̄is become 0 at

p = 1. Because Rcr > 1, we can show that R̄ir > 1 with p = 1. Then, Rns > Rnr

(that is, R̄nr < 1), which implies that 0 < pa < 1 (see Fig.1). Here

pa =
1

σ

(
1

Rnr
− 1

Rns

)
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is satisfied with R̄ir(pa) = 1. Actually, R̄is < 1 < Ris and R̄ir < 1 < Rir can

not hold simultaneously. Therefore, if we can show that pa < p̄, then R̄is > 1 for

0 < p < pa (see Fig. 1). Here

p̄ = 1 − 1

Rns

is satisfied with Ris(p̄) = 1. Then, because R̄is is a monotonically decreasing function

of p and R̄is(1) = 0, we can show that 0 < pa < pb < 1 (see Fig. 1). Here

pb = 1 − 1

Rns

{(
1 − 1

σ

)
(1 − R̄nr) + Rnr

}
is satisfied with R̄is(pb) = 1. In fact, we can prove that pa < p̄ as

pa < p̄ ⇐⇒ b

σc

(
b + mz

ϕ
− b + my

ω

)
< 1 − b(b + my)

cω

⇐⇒ 1 +
b + my

ω

ϕ

b + mz

(σ − 1) <
σϕ

b + mz

c

b
.

Because 0 < σ < 1 and Rcr > 1, we can show that pa < p̄, which means 0 < pa <

pb < 1 (see Fig. 1). Therefore, from Theorems 1–3, the stable equilibrium changes

Ens → Eis → Ei+ → Eir → Ecr

as p increases if Rcr > 1. In fact, Eis (Ens) is stable if 0 ≤ p < pa, Ei+ is stable if

pa ≤ p < pb, and Eir (Ecr) is stable if pb ≤ p ≤ 1.

Second, we consider cases Rcr < 1 and p∗ < p̄. Here,

p∗ =
1

1 − σ

(
1 − 1

Rnr

)
is satisfied with Rir(p∗) = 1. In this case, we have two possible situations (a) R̄ir < 1

for 0 ≤ p ≤ 1 and (b) R̄ir > 1 with p = 1 (see Fig. 2). In case (a), from Theorems

1-3, Eis (Ens) is stable if 0 ≤ p < p̄ and Eio (Eco) is stable if p̄ ≤ p ≤ 1. In case

(b), we can show that R̄ir(p∗) < 1 as follows.

R̄ir(p∗) < 1 ⇐⇒ 1 +
σ

1 − σ

(
ω

b + my

c

b
− b + mz

ϕ

ω

b + my

)
<

b + mz

ϕ

ω

b + my

⇐⇒ 1 +
σ

1 − σ
(Rns − R̄ns) < R̄ns

⇐⇒ 0 < (R̄ns − 1) + σ(1 − Rns)

⇐⇒ p∗ < p̄

Therein, R̄ir is a monotonically increasing function of p. Therefore, we can show

that R̄ir < 1 for 0 < p < p∗ (see Fig. 2). Therefore, similarly, Eis (Ens) is stable if
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0 ≤ p < p̄ and Eio (Eco) is stable if p̄ ≤ p ≤ 1. Consequently, the stable equilibrium

changes

Ens → Eis → Ei0 → Ec0

as p increases if Rcr < 1 and p∗ < p̄.

Third, we consider case Rcr < 1 and p∗ > p̄. We have the following relations.

R̄ir(1) > 1 ⇐⇒ ϕ

b + mz

b + my

ω
+

σϕ

b + mz

c

b
> 1

⇐⇒ 1 − R̄ns + σRns > 0

In fact, p∗ > p̄ is equivalent to 1 − R̄ns + σRns > σ. Therefore, we can show that

R̄ir > 1 with p = 1. Furthermore, the following relations hold:

pa < pb ⇐⇒ b

σc

(
b + mz

ϕ
− b + my

ω

)
< 1 − b + my

cω

{
b(1 − 1

σ
)

(
1 − ϕ

b + mz

b + my

ω

)
+

ϕc

b + mz

}
⇐⇒R̄ns − 1 < σRns(1 − R̄nr) − (σ − 1)(1 − R̄nr)

⇐⇒0 < (1 − R̄nr){R̄nr(σRns − σ + 1) − 1}.

In fact, p∗ > p̄ is equivalent to R̄nr(σRns − σ + 1) − 1 > 0. Therefore, because

R̄nr < 1, we can show that pa < pb. In addition, we can show that pb < p̄ as follows:

pb < p̄ ⇐⇒1 − b(b + my)

cω

{(
1 − 1

σ

)(
1 − ϕ

b + mz

b + my

ω

)
+

ϕc

b(b + mz)

}
< 1 − b(b + my)

cω

⇐⇒(σ − 1)

(
ω

b + my

b + mz

ϕ
− 1

)
+

σcω

b(b + my)
>

σω

b + my

b + mz

ϕ

⇐⇒(σ − 1)(R̄ns − 1) + σRns > σR̄ns

⇐⇒(1 − R̄ns) + σ(Rns − 1) > 0.

In those expressions, p∗ > p̄ is equivalent to (1− R̄ns) + σ(Rns − 1) > 0. Therefore,

we can obtain pb < p̄. The following order for p holds: 0 < pa < pb < p̄ < p∗ < 1.

Consequently, from Theorems 1-3, the stable equilibrium changes

Ens → Eis → Ei+ → Eir → Ei0 → Ec0

as p increases if Rcr < 1 and p∗ > p̄. In fact, Eis (Ens) is stable if 0 ≤ p < pa, Ei+

is stable if pa ≤ p < pb; in addition, Eir is stable if pb ≤ p < p∗, and Ei0 (Ec0) is

stable if p∗ ≤ p ≤ 1.
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We can summarize the impact of the loss of protection effectiveness of vaccination

as follows: Define

σ∗ =
R̄ns − 1

Rns − 1
, σ̄ =

1

Rnr
,

which are satisfied with 0 < σ∗ < σ̄ < 1 (where σ∗ < σ̄ is equivalent to 1 < Rnr).

The following relations hold for 0 < σ < 1:

1 < Rcr ⇐⇒ σ̄ < σ < 1,

Rcr < 1, p∗ < p̄ ⇐⇒ 0 < σ < σ∗,

Rcr < 1, p∗ > p̄ ⇐⇒ σ∗ < σ < σ̄.

Therefore, the change of the total number of infected individuals by vaccination is

divisible into the three patterns (see Fig. 4). In addition, because we assume that

my > mz in Fig.4, the total number always increases if both strains co-exist. In

case my < mz, we can also observe these three patterns, although the total number

always decreases as p increases. As inferred from results of the mathematical analysis

presented above, we need not perform a sensitivity analysis about the change of the

total number of infected individuals.

4. Vaccination can facilitate spread of disease

We investigate conditions in which the vaccination can help the spread of the disease

under my > mz. Assume that σ∗ < σ < 1. This is true because the vaccination

always prevents the spread of the disease if 0 < σ < σ∗ (see Fig. 4). Define

T0 =
cω − b(b + my)

ω(b + my)
, Tb =

c

b + mz

+
(1 − σ)b(b + my)

σω(b + mz)
− b

σϕ
,

where T0 represents the total number of infected individuals before the vaccination

program (p = 0) and Tb represents the total number with p = pb (see Fig. 4). We

can evaluate it as follows:

T0 < Tb ⇐⇒cω − b(b + my)

ω(b + my)
<

c

b + mz

+
(1 − σ)b(b + my)

σω(b + mz)
− b

σϕ

⇐⇒ cω

b(b + my)
− 1 <

ω

σϕ

{
σcϕ

b(b + mz)
+

(1 − σ)ϕ(b + my)

ω(b + mz)
− 1

}
⇐⇒σ{ϕ(Rns − 1) − ω(Rnr − R̄nr)} < ω(R̄nr − 1).

We remark that ϕ(Rns−1)−ω(Rnr−R̄nr) < 0 is equivalent to my > mz. Therefore,

we can obtain the following relation:

T0 < Tb ⇐⇒ σ̃ =
ω(R̄nr − 1)

ϕ(Rns − 1) − ω(Rnr − R̄nr)
< σ.
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In fact, σ∗ < σ̃. Consequently, if σ∗ < σ < σc, then T0 > Tb, where σc = min{σ̃, 1}.
On the other hand, if σc < σ < 1, then T0 < Tb. Therefore, when the loss of

protection effectiveness is high, the total number becomes larger than that before

the vaccination program.

5. Difficulty of prediction of a prevalent strain

We show that a strain having a smaller basic reproductive number can beat another

strain having the larger one. We assume that Rcr > 1 (σ̄ < σ < 1). If pe < p < pa,

then from Theorems 1–3, the vaccine-sensitive strain is shown to be able to beat

the vaccine-resistant strain in spite of Rir > Ris (see Fig. 5). On the other hand, if

pb < p < pe, then the vaccine-resistant strain can beat the vaccine-sensitive strain

in spite of Rir < Ris (see Fig. 5). Here

pe =
R̄ns − 1

R̄ns − 1 + σ

is satisfied with Ris(pe) = Rir(pe). We can also obtain the same results in case

Rcr < 1 (σ∗ < σ < σ̄).

6. Optimal prevalence rate of vaccination program

We investigate an optimal prevalence rate of vaccination program under my > mz,

which minimizes both the total number of infected individuals and the prevalence

rate. If 0 < σ < σ∗, then the optimal prevalence rate is p̄ (see Fig. 4). If σ∗ < σ < σ̄,

then the optimal prevalence rate is p∗ (see Fig. 4). In case σ̄ < σ < 1, we can obtain

the optimal prevalence rate as follows: Define

Ta =
c

b + my

− b

ω
+

b

σ(b + my)

(
b + my

ω
− b + mz

ϕ

)
, T1 =

σϕc − b(b + mz)

σϕ(b + mz)
,

where Ta represents the total number of infected individuals with p = pa, and T1

represents the total number after vaccination with complete prevalence (p = 1). If

Ta < T1, then p = pa is the optimal prevalence rate. On the other hand, if Ta > T1,

then p = 1 is the optimal prevalence rate. In relation to that point, we offer the

following:

Ta < T1 ⇐⇒ c

b + my

− b

ω
+

b

σ(b + my)

(
b + my

ω
− b + mz

ϕ

)
<

σϕc − b(b + mz)

σϕ(b + mz)

⇐⇒σϕ
ω

b + my

c

b
− σϕ − σω

ϕ

b + mz

c

b
< ϕ

ω(b + mz)

ϕ(b + my)
− ω − ϕ

⇐⇒σ(ϕRns − ϕ − ωRnr) < ϕR̄ns − ϕ − ω.
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Because ϕ(Rns − 1)−ω(Rnr − R̄nr) < 0 is equivalent to my > mz, we can show that

ϕRns − ϕ − ωRnr < 0. Therefore, we can obtain the following relation:

Ta < T1 ⇐⇒ σo =
ϕR̄ns − ϕ − ω

ϕRns − ϕ − ωRnr
< σ.

Consequently, if σ̄ < σ < σo, then Ta > T1, which also implies that the optimal

prevalence rate is p = 1. On the other hand, if σo < σ < 1, then Ta < T1, which

also implies that the optimal rate is p = pa.

We perform sensitivity analysis to investigate the effect of unestimated parameter

change on the optimal prevalence rate shown by the simulation using baseline values

(see Table 1). In the top and bottom four figures, we respectively sample the relative

mean infectious period of the vaccine-resistant strain (b + my)/(b + mz) from the

range of [1, 2] (mz ∈ [0.026, 0.062]) and the relative transmissibility of the vaccine-

resistant strain ϕ/ω from the range of [0.4, 0.8] (ϕ ∈ [1.91× 10−4, 3.82× 10−4]). The

other parameters are the same as those presented in Fig. 4 in the main article. From

the top four figures, it is apparent that the catastrophic change is apt to occur in

the low prevalence rate of the program when mz is small. Furthermore, from the

bottom four figures, when the transmissibility of the vaccine-resistant strain ϕ is

large, achievement of the optimal prevalence rate becomes difficult. For that reason,

increasing the basic reproductive number of vaccine-resistant strain Rir imparts a

negative effect on the vaccination program’s efficacy.

7. Variation of final size of epidemic according to the vacci-

nation program

We investigate a variation of final size of the epidemic by vaccination program de-

pending on the prevalence rate. The variation is between the smallest and largest

total number of infected individuals. The smallest total number of infected indi-

viduals is given as the following: If 0 < σ < σ̄, then the optimal total number

of infected individuals is 0. If σ̄ < σ < σo, then the optimal total number is T1.

Furthermore, if σo < σ < 1, then Ta. On the other hand, the largest number of

infected individuals is given as follows: If 0 < σ < σc, then the worst total number

of infected individuals is T0. If σc < σ < 1, then the worst total number is Tb.

We perform sensitivity analysis to investigate the effect of unestimated parameter

change on the variation of the final size shown using the simulation with baseline

values (see Table 1). In the top and bottom four figures, we respectively sample

the virulence of the vaccine-resistant strain mz from the range of [0.026, 0.062], the

transmissibility of the vaccine-resistant strain ϕ from the range of [1.91×10−4, 3.82×
10



10−4]. The other parameters are the same as those presented in Fig. 5 in the

main article. The variation is more sensitive for mz than for ϕ. From the top four

figures, it is apparent that the variation widens and the worst total number increases

dramatically as mz decreases. On the other hand, from the bottom four figures, the

variation seems to be reduced as ϕ increases and the worst total number changes

only slightly.

8. Time-course of the spread of the disease

Using the parameters given in Table 1 as a default, we varied some parameters to

test their effect on the time-course of the spread of the disease shown by numerical

simulations in Fig. 7 in the main article.

First, we perform sensitivity analysis about the time-course of the spread of the

disease with a vaccination program to change only the unestimated parameters.

In the top, upper middle, lower middle, and bottom four figures of Fig. 8, we

respectively sample the virulence of the vaccine-resistant strain mz from the range

of [0.026, 0.062], the transmissibility of the vaccine-resistant strain ϕ from the range

of [1.91 × 10−4, 3.82 × 10−4], the prevalence rate of vaccination program p from the

range of [0.4, 0.7], and the loss of protection effectiveness of vaccination σ from the

range of [0.5, 0.9]. The other parameters are the same as those presented in Fig.

7 in the main article. The top four figures show that the relative mean infectious

period of the vaccine-resistant strain seems to play an important role on the final

size of the epidemic. As mz increases, the final size is reduced. Furthermore, from

the lower middle figures, the prevalence rate is shown to have a large effect on the

replacement time of the resistant strain. The replacement time becomes shorter as

the prevalence rate p increases because the vaccine-sensitive strain dies out rapidly

from the high-prevalence vaccination program. However, in almost all figures, the

replacement time of the resistant strain seems to be about several months; the final

size of the epidemic increases to greater than one before (without) the vaccination

program. Therefore, we can conclude that the qualitative behaviors are preserved

for variable parameter changes.

Second, similarly, we also perform a sensitive analysis about the time-course of

the spread of the disease with vaccination and non-pharmaceutical interventions.

In the top, upper middle, lower middle, and bottom four figures of Fig. 9, we

respectively sample the virulence of the vaccine-resistant strain mz from the range

of [0.058, 0.137], the transmissibility of the vaccine-resistant strain ϕ from the range

of [0.68×10−4, 1.36×10−4], the prevalence rate p from the range of [0.4, 0.7], and the

loss of protection effectiveness σ from the range of [0.5, 0.9]. The other parameters
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are the same as those presented in Fig. 7 in the main article. The vaccine-sensitive

strain is dramatically reduced and the vaccine-resistant strain hardly spread in the

population. Therefore, both strains are eventually controlled at a low level by the

interventions in almost all figures.

9. Incomplete protection against vaccine-sensitive strain

We investigate an effect of incomplete protection against vaccine-sensitive strain. In

model (1), we assumed that the vaccinated birds can give perfect protection from

infection by the vaccine-sensitive strain. Here we relax that assumption: we as-

sume that the vaccinated individuals can protect the infection from vaccine-sensitive

strains at the rate 0 ≤ 1 − δ ≤ 1, satisfying δ < σ. Therefore, our mathematical

model is rewritten as

X ′ = (1 − p)c − bX − (ωY + ϕZ)X,

V ′ = pc − bV − (δωY + σϕZ)V,

Y ′ = ωY (X + δV ) − (b + my)Y,

Z ′ = ϕZ(X + σV ) − (b + mz)Z.

Using the parameters in Table 1 as default, we varied δ to test its effects on the final

size of epidemics.

First, we investigate the effect of the vaccination program. The parameters are

fixed as σ = 0.35 and mz = 0.045 (lower virulence case) or 0.065 (higher virulence

case) as in Fig. 2 in the main article; δ is sampled from the range of [0, 0.2] [5]. The

patterns of the final size are also divisible into two cases that depend strongly on

the virulence of the vaccine-resistant strain (see Fig. 10). If my > mz (top figures),

then the total number can increase during some prevalence rates, but if my < mz

(bottom figures), then the total number always decreases. The two patterns are

qualitatively preserved for variable δ, although the effect of the loss of protection

effectiveness against a vaccine-sensitive strain delays the emergence of the vaccine-

resistant strain.

Second, we investigate the impact of the loss of protection effectiveness against

vaccine-sensitive and vaccine-resistant strains. The loss of protection effectiveness

against vaccine-resistant strains are fixed as σ = 0.05, 0.15, and 0.8, similarly to that

presented in Fig. 3 in the main article. In addition, δ is sampled from the range of

[0, 0.2]. The patterns of the change are also divisible into three cases (see Fig. 11).

If σ is small (top figures), then the vaccination can control the epidemic without the

emergence of a vaccine-resistant strain. If σ is medium sized (middle figures), then
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the vaccination eventually prevents the spread of the disease. However, if σ is large

(bottom figures), then the vaccination no longer controls the disease. Although we

can also observe that the effect of the loss of protection effectiveness against vaccine-

sensitive strain delays the emergence of vaccine-resistant strain, the three patterns

are qualitatively preserved for variable δ.
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Figure 1: Basic and invasion reproductive numbers as a function of p with Rcr > 1:
The left panel portrays relations between basic reproductive numbers and the prevalence
rate of the vaccination program p. The black and red lines respectively depict the basic
reproductive number of vaccine-sensitive and the vaccine-resistant strain. The right panel
represents relations between invasion reproductive numbers and p. The black and red lines
respectively signify the invasion reproductive numbers of vaccine-sensitive and vaccine-
resistant strains. Actually, BRN and IRN respectively represent the “basic reproductive
number” and “invasion reproductive number”. Here p̄, pa, pb are satisfied with Ris(p̄) = 1,
R̄ir(pa) = 1, R̄is(pb) = 1, respectively.
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Figure 2: Basic and invasion reproductive numbers as a function of p with Rcr < 1 and
p∗ < p̄: The left panel represents relations between basic reproductive numbers and p. The
black and red lines respectively signify the basic reproductive number of vaccine-sensitive
and vaccine-resistant strain. The right panel represents relations between the invasion
reproductive number of vaccine-resistant strain and p. ((a) R̄ir < 1 for 0 ≤ p ≤ 1 and (b)
R̄ir > 1 with p = 1). Here p∗ is satisfied with Rir(p∗) = 1.

Figure 3: Basic and invasion reproductive numbers as a function of p with Rcr < 1
and p∗ > p̄: The left panel portrays relations between basic reproductive numbers and
p. The black and red lines respectively depict the basic reproductive number of vaccine-
sensitive and vaccine-resistant strains. The right panel presents relations between invasion
reproductive numbers and p. The black and red lines respectively display the invasion
reproductive number of vaccine-sensitive and vaccine-resistant strain.

Figure 4: Impact of the loss of protection effectiveness of vaccination on all infected
individuals: The change of the total number of infected individuals is classifiable into
three cases under my > mz: left – 0 < σ < σ∗; middle – σ∗ < σ < σ̄; and right –
σ̄ < σ < 1. Here T0, Ta, Tb, and T1 respectively signify the total numbers with p = 0,
p = pa, p = pb, and p = 1.

Figure 5: Basic and invasion reproductive numbers as a function of p with Rcr > 1
(σ̄ < σ < 1). The left panel presents relations between basic reproductive numbers and
the prevalence rate of vaccination program p. The black and red lines respectively signify
the basic reproductive number of vaccine-sensitive and vaccine-resistant strain. The right
panel presents relations between invasion reproductive numbers and p. The black and
red lines respectively depict the invasion reproductive number of vaccine-sensitive and
vaccine-resistant strain. Here pe is satisfied with Ris(pe) = Rir(pe).

Figure 6: Sensitivity analysis of the relative mean infectious period of the vaccine-resistant
strain and the relative transmissibility of the vaccine-resistant strain for the optimal preva-
lence rate of the vaccination program: We respectively sample mz from the range of
[0.026, 0.062] and ϕ from the range of [1.91 × 10−4, 3.82 × 10−4].

Figure 7: Sensitivity analysis of the relative mean infectious period of the vaccine-resistant
strain and the relative transmissibility of the vaccine-resistant strain for the variation of
the final size of the epidemic. We respectively sample mz from the range of [0.026, 0.062]
and ϕ from the range of [1.91 × 10−4, 3.82 × 10−4].
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Figure 8: Sensitivity analysis of the relative mean infectious period of the vaccine-resistant
strain, the relative transmissibility of the vaccine-resistant strain, the prevalence rate of
vaccination program, and the loss of protection effectiveness of vaccination for the time-
course of spread of the disease with vaccination program: We respectively sample mz from
the range of [0.026, 0.062], ϕ from the range of [1.91× 10−4, 3.82× 10−4], p from the range
of [0.4, 0.7], σ from the range of [0.5, 0.9]. The qualitative behaviors are preserved for
variable parameter change.

Figure 9: Sensitivity analysis of the relative mean infectious period of the vaccine-resistant
strain, the relative transmissibility of the vaccine-resistant strain, the prevalence rate of
vaccination program, and the loss of protection effectiveness of vaccination about the time-
course of spread of the disease with vaccination and non-pharmaceutical interventions:
We respectively sample mz from the range of [0.058, 0.137], ϕ from the range of [0.68 ×
10−4, 1.36 × 10−4], p from the range of [0.4, 0.7], σ from the range of [0.5, 0.9]. The
qualitative behaviors are preserved for variable parameter change.

Figure 10: Sensitivity analysis of loss of protection effectiveness against vaccine-sensitive
strain δ for the effect of the vaccination program: We assume that σ = 0.35, mz = 0.045
(lower virulence case) or 0.065 (higher virulence case), and δ is sampled from the range of
[0, 0.2]. The top and bottom four panels respectively represent the final size of epidemics
related with the prevalence rate of vaccination in the case of lower and higher virulence
of vaccine-resistant strains.

Figure 11: Sensitivity analysis of loss of protection effectiveness against vaccine-sensitive
strain δ: We investigate the impact of the loss of the protection effectiveness of the vacci-
nation σ and δ on the change of final size of the epidemic. The top, middle, and bottom
four figures respectively represent cases σ = 0.05, 0.15, and 0.8. We assume that δ is
sampled from the range of [0, 0.2].
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