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1. Bayesian Statistical Methods 

 

The Bayesian Expression Search Tool (BEST) algorithm proposed in the manuscript is a 

Markov chain Monte Carlo (MCMC)-based computational method [2] which assumed an 

explicit statistical model that describes the relationship between the query gene and the entire 

microarray compendium.  In this section, we first describe the general Bayesian inference 

procedure and then the detail implementation for BEST. 

 

The full process of a typical Bayesian analysis can be described as consisting of three main 

steps [3]. (a) setting up a full probability model, the joint distribution, that captures the 

relationship among all the variables (e.g., observed data, missing data, unknown parameters) in 

consideration; (b) summarizing the findings for particular quantities of interest by appropriate 

posterior distributions, which is typically a conditional distribution of the quantities of interest 

given the observed data; and (c) evaluating the appropriateness the model and suggesting 

improvements (model criticism and selection).  

 

A standard procedure for carrying out step (a) is to formulate the scientific question of interest 

though the use of a probabilistic model, from which we can write down the likelihood function 

of unknown parameter. In BEST, the input data for statistical inference is the difference, 

� � ���, ��, … , ��	
, between the particular query expression profile and the expression profile 

of genes in the database. The unknown parameters Θ � ��, �	 are a row indicator vector 

� � �
�, 
�, … , 
�	  and a column indicator vector � � ���, ��, … , ��	 . Here R indicates 

whether the target genes are functionally related to the query gene, and E indicates whether 

co-expression occurs under the experimental conditions. We assume that the differences 

between a related gene and the query gene at the foreground columns follow normal 

distributions, and others follow a background normal distribution. So the query problem could 

be viewed as statistical inference from a Gaussian mixture model. Then a prior distribution 

����	  is contemplated, which should be both mathematically tractable and scientifically 

meaningful. In BEST, we adopt standard conjugate priors for these model parameters [3]. The 

joint probability distribution can then be represented as ����� � ���������� � �
��
, i.e., 

���, �	 �  ��� | �	����	 

Step (b) is completed by obtaining the posterior distribution through the application of Bayes 

theorem: 

��� | �	 �
�� �, � 	

���	
�

�� � | � 	����	

! �� � | � 	����	� �
"  �� � | � 	����	 

After integrating out nuisance parameters, we get full conditional distributions of R and E, 

which are Bernoulli distributions. Finding the maximum likelihood estimator seems a good 

way to solve this problem, i.e., finding the genes which are most likely functionally related to 

the query gene, and the experimental conditions where co-expression most likely occurs. 

However, it is impossible to enumerate all possible combinations due to the large numbers of 

genes in database and so many different experimental conditions. We therefore employ a 

MCMC strategy to find a near-optimal solution. MCMC refers a collection of stochastic 

simulation techniques that can be used to sample from complicated probability distributions. Its 

basic principle is to design a Markov transition rule so that the equilibrium distribution of the 
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Markov chain is the desired distribution. One of the most popular algorithms is the Gibbs 

sampler, which updates one component at a time. Each component-wise update is achieved by a 

sample drawn from its conditional distribution with values of other components held fixed. In 

BEST, we use Gibbs sampler to sample joint distribution of row indicator vector � �

�
�, 
�, … , 
�	 and column indicator vector � � ���, ��, … , ��	. We draw Bernoulli sample of 

each indicator according to the Bayes factor between two normal distributions, with all the 

other indicators held constant. The posterior likelihood converges after a number of iterations, 

and then we report the parameters corresponding to the posterior mode as our parameter 

estimators. Several parallel chains are used simultaneously to prevent trapping in the local 

mode. 

 

The Bayesian approach has at least two advantages. First, through the prior distribution we can 

use prior knowledge and information about the value of unknown parameters. This is especially 

important since biologists often have substantial knowledge about the subject under study. To 

the extent that this information is correct, it will sharpen the inference about the unknown 

parameters. In BEST, users can customize the parameters for prior distributions such that 

certain genes and experimental conditions will have a higher chance to be selected as target 

gene/foreground conditions. Users can even fix some indicator variables based on previous 

knowledge/experience. Correctly assigned informative priors can make BEST converge much 

faster and generate much more accurate predictions.  

 

Second, treating all the variables in the system as random variables greatly clarifies the 

methods of analysis. It follows from the basic probability theory (Bayes formula) that 

information about the realized value of any random variable based on observation of related 

random variables is summarized in the conditional distribution. In BEST, we can get the close 

form of posterior distribution since we adopt standard conjugate priors. In addition, it is easy to 

integrate out nuisance parameters and results in simple distribution (Bernoulli distribution) for 

parameters of interest.  
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2. Detailed protocol of microarray data analysis procedure using BEST 

 

The E. coli dataset originally came from the study reported in Faith et al. (2007). The authors 

conducted a comprehensive survey of gene expression profiles of all E. coli genes using 612 

Affymetrix GeneChip arrays treated with 305 different experimental conditions. RMA 

normalized data (Faith et al., 2008) was used in this study, which consisted of 4,217 genes and 

305 samples. The detail of microarray data analysis procedure, such as microarray profiling, 

bacterial strains, steady-state experiments, time-course experiments, preparation of RNA and 

hybridization, external data, microarray normalization, are available at (Faith et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: download microarray compendium data file “E_coli_v4_Builid_4_norm.tar.gz” from 

http://m3d.bu.edu/norm/?C=M;O=A. This zipped data file describes the normalized 

compendium dumps from M3D, which contains six files with expression data. 

“avg_E_coli_v4_Build_4_exps305probes4217.tab”, the expression data file which contains 

305 experimental conditions and 4217 genes, was used in our study. 

 

Step 2: get the expression profile of the query gene, for example: Lrp, from the microarray 

compendium “avg_E_coli_v4_Build_4_exps305probes4217.tab”, which is the expression 

profile of Lrp across the 305 different experimental conditions.  

 

Step 1: download the microarray compendium data 

Step 2: get the expression profile of the query gene 

Step 3: filter genes by variance 

Step 4: normalize gene expression levels 

Step 5: run BEST and interpret the result 

Step 6: conduct motif search on BEST predicted target genes 
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Step 3: filter genes based on their variances. First, we calculated the variances of all 4217 genes 

found in the microarray compendium. We then remove all genes whose variation across all 

experimental conditions is less than the query gene. This purpose of filtering is to reduce 

computation time and to maximize the chance of finding biological meaningful targets. For the 

query gene Lrp, there are 524 genes (out of 4217 in total, 12%) with total expression variance 

greater than that of Lrp. We thus used these 524 candidate genes in our search. 

 

Step 4: normalize the query gene and the 524 candidate genes. First, we calculated the mean 

and standard deviation across the 305 experimental conditions for each gene, and then 

normalize each of the gene expression levels by subtracting its mean and dividing by its 

standard deviation. After normalization, the query gene Lrp and the 524 candidate genes all 

have the same mean and variance (mean=0 and standard deviation=1). 

 

Step 5: run BEST on the normalized gene expression levels using user-specified parameters 

such as the number of iteration in MCMC and the number of parallel chains.  

 

Step 6: conduct motif search. We download position specific weight matrices (PSWM) from 

RegulonDB (http://regulondb.ccg.unam.mx/data/Matrix_AlignmentSet.txt), and the complete 

E. coli genome from GenBank  

(ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Escherichia_coli_K12_substr__MG1655/U

00096.fna). We then calculated the log likelihood ratio comparing between the motif model and 

the background model on each possible start location in the intergenic regions (up to 500 bp 

upstream) of genes identified by BEST. The locations with log likelihood ratio higher than a 

certain threshold are treated as putative motifs.  
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3. Query result from six other transcription factors 

In addition to TF Leucine-responsive Regulatory Protein (Lrp), we used another six TFs (PdhR, 

FecI, LexA, FlhC, FlhD and FliA) as the query genes in this study to test BEST’s performance. 

All six TFs have an almost equal number of target genes in ReglonDB and CLR prediction with 

an estimated 60% precision (Faith et al. 2007).  

 

3.1. Query result from PdhR 

PdhR has five target genes in ReglonDB. CLR predicted four target genes with 60% precision. 

None of them is in the RegulonDB target set. We included these nine genes and another 91 

negative genes to form a 100 gene test set. BEST found 27 target genes and 179 experimental 

conditions as foreground. Twenty-seven of BEST’s target genes included two target genes in 

ReglonDB and four target genes predicted by CLR (p-value of 0.0110). We found three genes 

(uspE, cspD, aceA) with inversed pattern. Table S4 lists all PdhR target genes identified by 

BEST. 

 

3.2. Query result from FecI 

FecI has six target genes in ReglonDB. CLR predicted eight target genes with 60% precision. 

Eight of these nine predictions are not in the RegulonDB target set. We included these 13 genes 

and another 87 negative genes to form a 100 gene test set. BEST found 31 target genes and 169 

experimental conditions as foreground. Thirty-one of BEST’s target genes included all 13 

target genes in ReglonDB and target genes predicted by CLR (p-value of 2.9×10-8). We found 

no gene with inversed pattern. Table S5 lists all FecI target genes identified by BEST. 

 

3.3. Query result from LexA 

LexA has 16 target genes. CLR predicted 17 targets genes with 60% precision. 10 of these 17 

predictions are not in the RegulonDB target set. We included these 26 genes and another 74 

negative genes to form a 100 gene test set. BEST found 31 target genes and 237 experimental 

conditions as foreground. Thirty-one of BEST’s target genes included 10 target genes in 

ReglonDB and all target genes predicted by CLR (p-value of 1.5×10
-8

). We found one gene 

(uspE) with inversed pattern. Table S6 lists all LexA target genes identified by BEST. 

 

3.4. Query result from FlhC 

FlhC has 30 target genes in ReglonDB. CLR predicted 53 targets genes with 60% precision. 24 

of these 53 predictions are not in the RegulonDB target set. We included these 54 genes and 

another 146 negative genes to form a 200 gene test set. BEST found 54 target genes and 266 

experimental conditions as foreground. Fifty-four of BEST’s target genes included 29 target 

genes in ReglonDB and all target predicted by CLR (p-value of 2.7×10-46). We found no gene 

with inversed pattern. yjdA is the new hypothetical FlhC target gene identified by BEST in 

addition to false positive genes in Faith’s prediction with 60% precision. Table S7 lists all FlhC 

target genes identified by BEST. 

 

3.5. Query result from FlhD 

FlhD has 46 target genes in ReglonDB. CLR predicted 46 target genes with 60% precision. 

Twenty of these 46 predictions are not in the RegulonDB target set. We included these 66 genes 
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and another 134 negative genes to form a 200 gene test set. BEST found 55 target genes and 

215 experimental conditions as foreground. Fifty-five of BEST’s target genes included 29 

target genes in ReglonDB and all target genes predicted by CLR (p-value of 1.67×10
-17

). We 

found two genes (micF, gadX) with inversed pattern. cheY, cheZ, flxA, micF, gadX and yjdA 

are the six new hypothetical FlhD target genes identified by BEST in addition to false positive 

genes predicted by CLR with 60% precision. Table S8 lists all FlhC target genes identified by 

BEST. 

 

3.6. Query result from FliA 

FliA has 42 target genes in ReglonDB. CLR predicted 56 target genes with 60% precision. 

Fifteen of these 56 predictions are not in the RegulonDB target set. We included these 57 genes 

and another 143 negative genes to form a 200 gene test set. BEST found 56 target genes and 

281 experimental conditions as foreground. Fifty-six of BEST’s target genes included 41 genes 

in ReglonDB and all target predicted by CLR (p-value of 4.08×10
-47

). We found no genes with 

inversed pattern, and no new hypothetical FliA target gene identified by BEST in addition to 

false positive genes predicted by CLR with 60% precision. Table S9 list all FliA target genes 

identified by BEST. 
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