S2 Appendix. R scripts used in core analyses.

Urbanization-induced habitat fragmentation erodes multiple components of temporal diversity in a Southern California native bee assemblage

Keng-Lou James Hung, John S. Ascher, and David A. Holway. PLoS ONE 2017.

Calculating rarefied Shannon diversity and evenness measures

library(vegan)

Loop (repeated for n = reps +1 times) for generating randomly-selected rarefied communities i <- 0 reps = 999 repeat {i <- i + 1;</pre>

Generate a single randomly rarefied community and store it in a temporary matrix a = rrarefy(bees.data.12, 100);

```
#Calculate Shannon diversity of matrix a and store it in matrix b b = diversity(a, index="shannon");
```

#Calculate Pielou's J evenness of matrix a based on Shannon diversity, and store it in matrix c c = b/log(specnumber(a));

#Store the single iteration of diversity and evenness into the eventual output matrix diversmat[i,] = b; evenmat[i,] = c;

if (i > reps) break;}

#Calculate the column means of output matrices, which are the results of the Shannon diversity and evenness rarefaction iterations.

colMeans(diversmat, na.rm = FALSE, dims = 1) colMeans(evenmat, na.rm = FALSE, dims = 1)

Analyzing temporal alpha diversity using linear mixedeffects models

library(nlme) library(car) # Used for the logit() function

First-degree mixed-effects models

model11spp = $Ime(Iogit(Evenness) \sim Treatment * Julian, random = ~1|Site, data = alpha.11)$ model11spp1 = $Ime(Iogit(Evenness) \sim Julian * Treatment, random = ~1|Site, data = alpha.11)$

Extract stats on the fixed effect included second (Julian date) for type II SS anova(model11spp)

Extract stats on the fixed effect included second (treatment) for type II SS anova(model11spp1)

Orthogonal polynomial mixed-effects models

Verify that polynomial models have improved AIC scores compared to first-degree models AIC(Ime(Abundance^(1/3) ~ poly(Julian,3) * Treatment, random = ~1|Site, data = alpha.11, method = "ML")) # 3rd degree orthogonal polynomial model AIC(Ime(Abundance^(1/3) ~ poly(Julian,2) * Treatment, random = ~1|Site, data = alpha.11, method = "ML")) # 2nd degree orthogonal polynomial model AIC(Ime(Abundance^(1/3) ~ Julian * Treatment, random = ~1|Site, data = alpha.11, method = "ML")) # 1st degree linear model

Create 3rd degree orthogonal polynomials from the Julian date independent variable poly.third.julian.11 = poly(alpha.11\$Julian, 3)

```
# Make data.frame with relevant dependent variable, site name, treatment, and orthogonal polynomials of Julian dates
```

data.poly.11 = cbind(alpha.11\$Treatment, alpha.11\$Site, alpha.11\$Abundance, poly.third.julian.11)

colnames(data.poly.11) = c("Treatment", "Site", "Abundance", "Julx1", "Julx2", "Julx3")

Construct linear models and extract stats from the last-included main effect and interaction term for type II SS

anova(Ime(Abundance^(1/3)~(Julx1+Julx2+Julx3)*Treatment, random= ~1|Site, data = data.poly.11))

anova(Ime(Abundance^(1/3)~Treatment*(Julx2+Julx3+Julx1), random= ~1|Site, data = data.poly.11))

anova(Ime(Abundance^(1/3)~Treatment*(Julx1+Julx3+Julx2), random= ~1|Site, data = data.poly.11))

anova(Ime(Abundance^(1/3)~Treatment*(Julx1+Julx2+Julx3), random= ~1|Site, data = data.poly.11))

Calculating multivariate dispersion scores for subsequent comparison via *t*-test

library(vegan)

- # Construct multivariate dispersion object based on a data.frame with species in columns. Each sample represents one temporal sample from one study site; the first column designates the study site to which the sample belongs.
- bees.beta.11 = betadisper(vegdist(bees.alpha.11[,-1], method="bray"), bees.alpha.11\$Sites, type="median")
- # The average distance to median is the within-site temporal dispersion of points, which is a measure of beta diversity

bees.beta.11