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1 The General Modd

We first present our general model, which encompasses ttstbpitg of variation in outcomes
across individuals within a generation, as well as acroseigd¢ions, and also the possibility of
intelligent behavior. In the following sections we consideveral special cases giving rise to the
results stated in the accompanying paper.

Each individual in a population is faced with a single deangn its lifetime, choosing actioa or

b, and this choice results in a certain number of offspringor z;,, respectively. The quantities
x, andx, are random variables with a joint distributidn(z,, ;). The behavior of individual is
represented by @/1 Bernoulli trial, I, with probability f, i.e., a is chosen with probability (in
which casel = 1), andb is chosen with probability — f (in which case/ = 0). When we wish
to specify the outcomes applicable to a particular indigigi for any of these variables, we add a
subscripti. Similarly, when we wish to specify a particular generatignve add the subscript

We assume that an individual with a choice functibmas offspring with the identical choice
function /. We are interested in the growth of the population of indinals with a specific choice
function over time, and we write, for the number of such individuals in generatiorin general,
we have

ng—1
ng = Z (Litair + (1 = Lit) it
=1
where the sum runs over all individuals in generation 1. We assume that although all the
individuals have the same functidnhthe random variable for each individual is independentlof a
the others. We also assume that the distributidpsare independent and identically distributed



across individuals and timeg. Under these assumptions, the valueptan be expressed as
ny = Ny (E [Liwat] + E[(1 — L) zpe))

:p Ni—1 (E [It] E [xat] +E [1 — It] E [«Tbt] + COV (It, xat) + COV (1 — It, xbt)) (1)

where the expectations and covariances in (1) are calcutatea typical individual having off-
spring at timet. No subscript;, is needed to index these individuals since all membersef th
population have the same expectation of outcomes and the shaice function/;. The sym-

bol £ denotes equivalence in probability, and this equivaletigdolows from the Law of Large
Numbers! Introducing some new notation, we can rewrite (1) as

Ty - N1 (f,uat + (1 - f)Mbt + f(l - f) (Uatpat + Ubtﬂbt)) ) (2)

wherep,; andu,,; represent the common expected valuesifgr andz;,;; for each individual at
time ¢, whereo,; andoy, represent the corresponding standard deviations, andevsheand p,;

represent the common correlations at tiod eachzx,,;; anday;; with I,; and1 — I;;, respectively.
Because all of these values are the same across all indisitlaging offspring at time, the
subscripti is not necessary in any of the terms in (2). It is also conven@write

m Ly (it + (U= P+ oip/ T 1)) 3)

where p; is the common correlation of;; with y;; = z.: — x;; for each individual having
offspring at timet, and wherer; is the common standard deviationf for such individuals.

We use backward recursion to find that

T
nr Zno [ [ (f,uat + (L= fpse + oepe/ f(1 = f)) ,

t=1
wheren, is the number of individuals in the population at titne 0. From this we deduce that

%mg nr 5 B [log (it + (1= P+ oo/ TT= )] (@)

where the expectation is taken with respect to the contislinit of the distribution of the random
variable values over times?

n particular, the sums over the sample population convaimest surely to the unrestricted means and covari-

ances. This follows since the variance of each relevantaaneariable must be bounded, provided that there is an

upper bound on the possible number of offspring a singleviddal may have.
°Note that to apply the Law of Large Numbers here we assume tila¢ terms

log (fuat + (1= e +oper/ f(1 — f)) have bounded variance. This assumption is valid provided th
the distribution of the argument of the logarithm does natehpositive mass in arbitrarily small neighborhoods of

Zero.



It is convenient to introduce a new notation for the rightwthaide of (4), namely

o = |1og (f1ar + (1= P+ 0o/ FT= )] )

In what follows, we seek to identify the values bthat give rise to the maximum value feot,
since individuals with such values will dominate the popiolaover time in a sense made precise
by the following proposition.

Proposition 1 Suppose that two different choice functiohsand /5, give rise to values; andas,
with the property thaty; > «,. Individuals with the choice functiol will become exponentially
more numerous over time, since
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In the following sections, we consider the parameters givige to maximal values far under
various specific assumptions about the nature of the disivitis ;.

2 TheCaseof NoIntelligence

We say that a member of the population exhibits intelligeihds behavior correlates positively
with outcomes, i.e., ip > 0. If p = 0, however, then we say that no intelligence is preseint.
this situation, we can writee = «(f), and we writef* for the value off that gives rise to the
maximum value ofv. Also, we can write the expression farfrom (5) as

a(f)=Elog (fpa: + (1 — f)u)] .
The valuef* that maximizes this expression faris characterized by the following proposition.

Proposition 2 If intelligence is not present in a population, the growtbtimmal behaviorf* is
given by

(

1 it B [ftar/ pe] > 1 @NAE g0/ prar] < 1
"=\ solution to (7) ifE [ttar/pise] > 1 @ndE [p10e/ tar] > 1 (6)
0 it B [ttae/ poe] < 1 @NdE [t/ ptar] > 1

where f* is defined implicitly in the second case of (6) by:

Hat o ot
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3The casep < 0 would correspond to “intelligence” that leads to a less faite outcome than no intelligence,

and so we exclude this case from consideration.



and the expectations are taken with respect to the jointidigions across time for 1., and pu,
as these distributions are implied by tfhg.

Proof. The result can be seen by computing the first and secondatiees ofa. Because the
second derivative is strictly negative, there is exactlg oraximum value obtained in the interval
f € [0,1]. The values of the first derivative of( /) at the endpoints of the interval ané(0) =

E [ftat/pnt) — L anda/(1) = 1 — E [t/ pat)- If o/(0) ande/(1) are both positive or both negative,
thena(f) increases or decreases, respectively, throughout theahtend the maximum value is
attained atf = 1 or f = 0, respectively. Otherwisg, = f* is the unique point in the interval for
which o/(f) = 0, wheref* is defined in (7), and it is at this point that f) attains its maximum
value. The expression (6) summarizes the results of thesenadtions for the various possible
values OfE [ptat/ ppe] @NAE [pipe/ 11a:]. NoOte that the case [pa: /s < 1 andE [pp/par] < 10
not considered because this set of inequalities impliesdhi@) < 0 anda/(1) > 0, which is
impossible, since”( f) is strictly negativel

3 A Universal Measure and Cost of Intelligence

As we have noted, the case of no intelligence corresponds ¢omelation, i.e.p, = 0, while the
case of intelligence corresponds to positive correlatien,p, > 0, with higher values representing
more intelligence. The correlation cannot necessarily assume any value in the rgdagg,
however, and it is in fact constrained by the choic¢ oMore specificallyp, can assume all values
in the rang€0, p; max(f)] but no values outside this range, wherg,..( f) is a function dependent
on f and the®;. A precise value fop, .. IS calculated in Proposition 3, below. Because the
upper bound fop, depends uporf, the measurg; is difficult to use as a universal representation
of underlying intelligence. We therefore introduce theitiddal variabley, defined as

_ Pt
= pt,max(f) . (8)

This is a universal representation of intelligence in thessethat it represents the fraction of the
maximum possible correlation achievable, and this fraatemains constant even as the maximum
possible correlation varies with

In the case in which there is no variation in thg across time, then the values@fandp; s (f)

are the same for al, and we write these common value @and p,,..(f). This is the case we
considered in our main paper, and there we simply ysasd the measure of intelligence instead
of v, since the two measures are the same up to a constant rgdealior that is common across
all generations. For purposes of this Supplementary Indtion, however, we deal with the more
general situation in which we must useénstead ofp as the universal measure of intelligence.

We suppose that a member of a population has a particulae wlfi € [0, 1] and a particular
value ofy € [0, 1], and that these attributes are passed on to all offspring wfdavidual. In terms
of f and~, the expression far in in (5) can be written

o = |10g (f1at + (1= Pt + 01prame(DVFT =) | ©)



We also consider the possibility thahas a cost;(y), associated with it, and that once this cost is
factored in, the expression farbecomes

o =B [1og (frae + (L= D+ 00 (7 = () pranax (IVFA=D)] . (20)

We assume tha{0) = 0 andc(y) > 0fory > 0. We also assume that-c¢(y) > 0 for sufficiently
small values ofy and thaty — ¢(y) < 0 for values ofy sufficiently close to 1. Thus, at least some
small amount of intelligence is beneficial, but high costkenthe choice ofy = 1 prohibitively
expensive. In addition, we make the further assumptiondisatwice continuously differentiable
and that’(y) > 0 andc¢’(y) > 0. Because of this assumption, there is a unique valug' tfat
maximizesy — c¢(7).

7* = uniquey such that'(vy) = 1. (11)

It is convenient to introduce some additional notationteslao the distribution of the;;, which is
given by the functionb;,. We write, for the probability thagy;; > 0 for individuals in generation
t,i.e.,

¢ = Prob(y; > 0). (12)

This value is thus the probability that choices superior to choicgin generatiort. In addition, we
write 6,7 andd; for the expected value af, conditional on eithey,;; > 0 or y;; < 0, respectively.
That is,

8 = Elyulvie > 0] and §; = E[yi|yu <0). (13)

The values o, 6;, ands,” are constant across all individuals in generatibacause the functions
®,; are independent and identical across individuals in géioera In much of what follows, we
also find it convenient to make the following assumption alibe independence af; and I;;,
conditional on the sign of;. This assumption may be violated in a fully general case,itbut
allows us to simplify our analysis and obtain more tractdbtenulas while still retaining a rich
framework in which to operate.

A 1 For all : andt, conditional on the sign aj;, the distribution ofy;; and the distribution of ;
are independent. Thus,

E[Iityit|yit > 0] = 5t+ E[Iit|yit > 0] and E[Iityit|yit < 0] =0, E[Iit|yit < 0]-

In other words, the value of; can only depend upon the sign @f, and thus the question of
whethera or b is the superior choice, and not upon additional informatadiout the degree of the
superiority of one choice over the other.

Under assumption Al, and using Propositions 3 and 4, whietpesven in Section 4 below, we
can rewrite (10) as

a=E [log (fﬂat + (1= f)pwe + (5t+ - 5;) (v = c(7)) (min(f, ¢r) — f%)” . (14)

We seek the values gf and~ that maximizex, as defined in (14). If the optimal value occurs
whenf = 0 or f = 1, then the amount of intelligence is clearly irrelevantgcsithe term involving
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intelligence vanishes and behavior is simply determiiidfithe optimal value occurs wheh
(0,1), then the optimal amount of intelligence is cleafly= +*, as defined above. The nature of
the optimal choice of is derived in Propositions 5 and 6, in the case of no systematiation
across generations, and Proposition 7, in the general case.

4 Upper Bound on Correlation

In this section we consider the restrictions on the possisliges forp;. The value ofp; is subject
to constraints that depend upon the nature of the distabst®;,(z,, x;), as well as on the value
of f for the population. The next proposition makes this depeodelear, when assumption Al
holds.

Proposition 3 Under assumption Al, the valuegfis given by

5o — o7
Py = COTT( ztvyzt) Corr (Im H (yit)) : L ) (15)
o1/ 0:(1 — @)

whereH (y;;) is the Heaviside function, which is 1 whgp> 0 and 0 otherwise. The values®f,
d; , andy;, are as defined in (13) and (12). The correlation betwéeand H (y;;) may be also be
written as

re & Corr (I, H (yi)) = (m: — 1f) , (16)

\/@t(l_@t)\/f(l—f)

= Prob (I;; = 1 andy; > 0). a7
The value of; and that ofr; are the same for each individualn a given generatioin.

where

Proof. The result follows directly from the definition of corrdlan. We have

E [Livyit) — E [LIi] E [yi]
Std () Std (L)

om0 4 (f - > f@@~+ﬂ—%ﬁ)
=
s

( <Ptf \/7]‘?

:< T —ouf )( 5 — o7 )
VI = Vel =) ar/v/ e (1 — )
— Corr (I, H (ya)) ( O — 0 ) ,

ot/ (1 — 1)

COI‘I‘ ( ity yzt)

which proves (15).



The value ofr; does not depend upon the choice of individuatcause the functiords; and/;; are
independent and identically distributed across indivislimgeneratiort. The lack of dependence
of r, on the choice of individual within a given generation can be seen by noting that

T — @i f
\/f(l—f)\/gpt(l—gpt)7

and observing that the right-hand side of this equation doedepend upon the choice of individ-
uali. i

Ty = COII‘ (Iit7 H (yzt)) =

An implication of the formula in (15) is that the possible was forp, cannot necessarily be ar-
bitrarily close to 1. The range of possible values fplis made more precise by the following
proposition.

Proposition 4 Under assumption Al, the range of possible valuesrfowhen intelligence is
present is

for < m <min (f, @) (18)
The corresponding range of possible valuesifas

max (f, p¢) — @uf 19
VIA=DVed =) (19

The inequalityr; < 1 holds whenevef # ¢,. The corresponding range of possible valuesor
is

0< re < Tt max; where Tt max =

o —op
o/ or(l—pr)

The inequalityp; max < 1 holds unless, = 1 and bothE [y2|y;: > 0] = (E [yZ|yi > 0])2 and
E [y3lya < 0] = (E [y3]ya < 0])°.

0< Pt < Pt,max; where Ptmax = Tt max (20)

Proof. From the definition ofr, in (17), it is clear thatr must be bounded above lyin ( f, ¢;).
Also, because intelligence only occurs whgn> 0, the formulas in (15) and (16) show that it
must also be the case thatis bounded below by ¢,, and this suffices to prove (18).

The range of possible values farcan be derived by substituting the limits of the possiblegean
for m, into the expression far, in (16), and the range of possible values gpfollows from (15).



To obtain an upper bound gn ...y, it is useful to proceed by first deriving a lower bound &r
Note that Holder’s Inequality shows that

o, =E[y;] — (B a))® = o B [Wiilyie > 0] + (1 — @) E [y |yie < 0]
— (Pt B [yielyie > 0]+ (1 — ¢0) B [yielya < 0])°
> 01 (E [yaelyie > 0))* + (1 — 1) (B [yi2t|yit < 0})2
— (P B [yielyie > 0]+ (1 — 00) B [yielyar < 0])°

= 01— @) (6 —6;7)".

The expectations are all taken with respect to a particaldividual within generatiort and are
also independent of the specific choice of individual wittiie generation. Also, the conditions
for equality in Holder’s inequality show that equality griolds for our lower bound oa? when
both B [y2|y: > 0] = (E [y2]ya > 0])* andE [y2|yx < 0] = (E [y3|ys < 0])°. The lower bound
ono? can be re-written as

0 — 0y

o/ (1 — @)
and this the upper bound on.,.. described in the propositioh.

5 Intelligence and No Variation Across Generations

We now consider the case in which there may be intelligerc#ha it is possible to have > 0,

but we assume that there is no variation in the distributfgogsible outcomes across generations.
Thus, we havei,, = g, pe = iy, 6, = 67,6, = §-, andy, = ¢. In this case, we can write the
expression fory from (9) as

a=1og (frra+ (1= flus+ (v —c(v)) (min(p, f) —¢f) (07 —67)). (21)

Note that we do not take the expectation of the logarithm is élxpression fory, since the value
of the logarithm is constant across generations under therduassumptions. The valuesoand
~ that maximizex in the case in which intelligence is costless (so tita) = 0) are characterized
by the following proposition.

Proposition 5 Under assumption Al, and under the further assumptionsitit@tigence has no
cost and that there is no variation in outcome possibilidesss generations, the valuesjfoénd

v at whicha is maximized ar¢f = ¢ and~ = 1, provided thatp € (0, 1). If ¢ is either 0 or 1,

thena is maximized wheri = ¢, and the value of; is irrelevant.

Proof. The expression fow in (21) is maximized when the argument of the logarithm is max
mized, and this can be written

e = fpa + (1= f + (min (¢, f) —f) (67 =467).
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The partial derivative oé* with respect toy is

%g5=<nnnmzf>—qﬁv(&*—a—),

and this value is greater than 0 provided tfig {0, 1}, sinced™ —§~ > 0. Thus, iff &€ {0, 1}, e*
is a strictly increasing function of, and the maximum value ef* for any fixed value off € (0, 1)
is obtained whery = 1.

The partial derivative o> with respect tof is

%§:wa—vw++u—wu—v»w,

whenf > ¢, and

Oe” _

a7 " 1-1-9)1=7)" + (1 —p)(1—9)d,
when f < ¢. Wheny = 1, the expressions fave® /0 f becomes simply~ or §*, whenf > ¢
andf < ¢, respectively. Because < 0 andd* > 0, e* obtains its maximum fof € (0, 1) is at
f=¢andy=1.

If ¢ is 0 or 1, then the value gof that maximizesy ande® is clearly f = ¢, and the value of is
irrelevant, since intelligence is irrelevant for an optimatcome in this situation.

Proposition 5 shows that, whetiy) = 0, more intelligence, i.e., a higher value, is always
desirable, except in situations in which behavior is conghyedeterministic, i.e.f is equal to
0 or 1. This result makes sense when intelligence is costlergsto make the situation more
realistic, we also consider the situation in which an imgelhce level ofy is associated with a cost
c(vy) # 0 of the type described in Section 3. The next propositionattarizes the values gfand

~ that maximizen: when there is no variation across generations and when igheteh a cost to
intelligence.

Proposition 6 Under assumption Al, and under the further assumptionghiea¢ is no variation

in outcome possibilities across generations and that tieegecostc(y) of intelligence of the type
described in Section 3, the valuesfoind v that maximizey are characterized in the following
way. If u, > pu, andy € (0, 1), then

;

@ ity —c(v) > e
F7=10.¢] iy —e(y7) = st and (22)
0 if " —c(v") < sle-



Here~* is as defined in (11). Ifi, < p, andy € (0, 1), then

;

i * * Ha—Hy -
oo iy —e(yr) >
I"=3lp.1] ify = cly") = 2= and (23)
if ~v* — * Ha—pb
L ity c(77) < ua—ub—%*'

If n, = pp thenf* = ¢, and ifo € {0,1}, thenf* = ¢. In all cases for whichf* ¢ {0,1}, the
optimal choice ofy isv*. If, however,f* € {0, 1}, then intelligence is unimportant, and the choice
of v+ does not matter.

Proof. The proof follows from a straightforward analysis of thet@d derivatives ofe® with
respect toy and f. The derivative ok* with respect toy is

%—f = (1= ¢(v)) (min(p, f) — @f) (67 =67),

and for any value off € (0, 1), this partial derivative is zero exactly when= ~*. Thus, if the
optimal value off is in the interior of the intervdD, 1], the optimal value ofy is v*.

When~ = ~*, the partial derivative of“ with respect tof can be written

%?:ufq%+®+—$x¢—dfﬁﬂ—¢% (24)
whenf < ¢, and Heo
a—ef = Uqg — Mo+ ((S—’_ — 5_)(7* - C(’}/*))(—QO), (25)

whenf > ¢. Wheny, > p, andyp € (0,1), the expression in (25) is always negative, and so
e® is decreasing irf in the regionf € [¢, 1]. Also, the sign of (24) is positive, zero, or negative,
according to whethey* — ¢(v*) is larger, equal to, or less than, respectively, the valﬁ%.

In these three situations, the functighis increasing, constant, or decreasing, respectlveﬁnén t

regionf € [0, ¢|. These observations lead directly to the results in (22).

The remaining results of the proposition follow from simidaalysis of the partial derivative ef
with respect tof in the various cases describad.

6 Exampleof Optimal Choicewith Intelligence

In this section, we provide an illustrative example of ourd®lain the case of no variation across
generations and the possibility of intelligence in behavio

For purposes of our example, we assume a cost function otiaydar type, namely
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Figure 1: Values ofy* and~* — ¢(v*) as functions ok, the cost of intelligence parameter in (26).

wherex > 0 is a parameter that can be chosen higher to indicate a geeto intelligence, or
lower to indicate the reverse situation. This functi¢m) can also be written

1
— eyl 26
) =n (1= 14 ), 26)
and it is straightforward to check that it satisfies all of oequirements for a cost function for

€ [0,1]. Specifically,y — ¢(y) > 0 for small values ofy, andy — ¢(y) < 0 for values ofy
sufficiently close to 1. Also;(7) is twice continuously differentiable, is increasing, asdonvex.
For this cost function, the value of defined in (11) can be written

[ K
f=1-— i
7 1+x

Also, the value ofy* — ¢(+*), which is needed to determine the cases specified in Praposit
can be written

v —c(y") = 1—|—2</—€— /{(1+/-c)).
The values ofy* and~* — ¢(+*) are plotted as functions afin Figure 1.

The result of Proposition 6 is illustrated in Figure 2. Weusss thatu, > 1,, and we use the
horizontal axis to indicate the size of the ratio= 6" /(u, — 1,). We use the vertical axis to
indicate the value of. For anyr andx values, Proposition 6 can be used to determine the optimal
f value, namelyf*. The value off* is either O orp, except wheny* — ¢(v*) = 1/(1 + r), and

in this special case the value ¢f may be anywhere between 0 apd The deterministic value 0

is possible while the deterministic value 1 is not simplydaese we have assumed thgt> .

As the figure indicates, a sufficiently high cost of intellige, as indicated by a high value,
corresponds to the deterministic choje= 0 and no use of intelligence. When intelligence has a
low enough cost for a given ratio value, however, the optichalice isf* = ¢, which is the same
frequency forf as occurs in probability matching.

11



0 10 20 30 40 50
6/ (kb — ta)

Figure 2: Values of* for particular values of andr = 6% / (1, — o). The region toward the upper
left corresponds to relatively costly intelligence andedetinistic behavior of the fornfi* = 0. The
region toward the lower right corresponds to relativelyaghmtelligence and probability matching
of the form f* = ¢. On the line between the two large regions, any valueffdoetween 0 ang

is optimal.

7 Intelligence and Variation Across Generations

The final case we consider is the one in which individuals maynkelligent and in which there
may be variation in outcomes over time. The following prapos describes nature of the optimal
choice of f and~ in this setting under certain assumptions.

Proposition 7 Under assumption Al, and under the further assumptionsttigatistribution of
s IS smooth and that intelligence has a cost of the type desdtib Section 3, the maximal value
of o occurs wheny = ~*. In addition, if the optimal choice of is in the interior of the interval
[0, 1], then this choice is defined implicitly by the equation

frar — fot + (7 = ¢(v*)) (67 = 0;) (H(pr — f) — 1)
Fttar + (1= f*) e + (v — (7)) (67 = 0;) (min(ey, f) — o1 f)

where H is the Heaviside function, and where the expectations dwertavith respect to the joint
distributions across timefor u,; and u,,;, as these distributions are implied by tig.

=0,

Proof. The optimality of the choicer = ~* follows from consideration of the derivative aof
with respect toy. The optimality off described in the proposition follows from the fact that the
second derivative o with respect tof is continuous and strictly negative, singehas a smooth
distribution. Also, because the optimal valuefds assumed to occur in the interior of the interval
0, 1], it follows that this value is the unique place at which thexgsive with respect tg vanishes,
wheny = ~*.1

12
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