S1 Appendix

With respect to Escherichia coli K12 MG1655 (E. coli), we used the 151-bp paired end library reads and one SMRT cell data described in S. Koren et al.’s publication [1]. We further downloaded another SMRT cell dataset of E. coli provided in Pacific Biosciences’ DevNet (http://pacificbiosciences.github.io/DevNet/).

MiSeq: Paired reads of E. coli are available at Illumina website. Mate1 and Mate 2 were downloaded separately.

Mate1:
ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655
_110721_PF_R1.fastq.gz

Mate2:
ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655
_110721_PF_R2.fastq.gz

Read length: 151bp
Read amount: 5,729,470 X2
Insert size ~ 300bp

We assembled the short reads using Abyss 1.3.4 [2]:
abyss-pe k=97 name=Abyss in=MiSeq_Ecoli_MG1655_110721_PF_R1.fastq

SMRT1: Although the PacBio sequence reads are available at SRA (http://www.ncbi.nlm.nih.gov/sra/SRX255228), we cannot handle adapters correctly by using fastq-dump. We therefore requested for the h5 files from NCBI help desk. Files are listed below:

m120208_071634_42139_c100288480630000001523009507231245_s1_p0.bas.h5 (1.2GB)
m120208_122534_42139_c100290260310000001523009507231262_s1_p0.bas.h5 (1010MB)
m120208_160812_42139_c100290260310000001523009507231264_s1_p0.bas.h5 (733MB)
m120228_082105_42139_c10030172550000001523012308061200_s1_p0.bas.h5 (1.2GB)
m120228_100807_42139_c10030172255000001523012308061201_s1_p0.bas.h5 (1.0GB)
m120228_115504_42139_c10030172255000001523012308061202_s1_p0.bas.h5 (1.0GB)
m120228_134222_42139_c10030172255000001523012308061203_s1_p0.bas.h5 (985MB)
m120228_152936_42139_c10030172255000001523012308061204_s1_p0.bas.h5 (1.1GB)
m120228_171636_42139_c10030172255000001523012308061205_s1_p0.bas.h5 (1.1GB)
m120228_190630_42139_c10030172255000001523012308061206_s1_p0.bas.h5 (984MB)
m120228_192221_42139_c100298890010000001523009207231260_s1_p0.bas.h5 (1.1GB)
We arbitrarily chose the first single SMRT cell (m120208_071634, corresponds to SRR797943) to run smrtpipe.py (SMRT analysis) with the following params.xml for getting the filtered subreads (*i.e.* continuous long reads).

```xml
<param name="minLength">
  <value>50</value>
</param>
<param name="readScore">
  <value>0.75</value>
</param>
<param name="minSubReadLength">
  <value>50</value>
</param>
```

Statistics of the filtered subreads (SMRT1):
- seqs amount: 37077
- seq avg len: 2023.338161
- total: 75.02 Mb
- depth: 16.13X

SMRT2: The h5 file was downloaded and unzipped from http://files.pacb.com/datasets/primary-analysis/e-coli-k12/1.3.0/e-coli-k12-mg1655-raw-reads-1.3.0.tgz. Similarly, we have run smrtpipe.py to get the filtered subreads.

Statistics of the filtered subreads (SMRT2):
- seqs amount: 41312
- seq avg len: 2584.021471
- total: 106.75 Mb
- depth: 22.96X

CPBLR1a & CPBLR2a: The filtered subreads (SMRT1 and SMRT2) were corrected to long reads (corrected PacBio long reads, CPBLRs) via invoking the PBcR command (refer to [PBcR](https://github.com/PacificBiosciences/PBcR) for details, we have downloaded the version of 8.2
beta) along with the Miseq data:

```
fastqToCA -libraryname Miseq -insertsize 297 35 -mates
MiSeq_Ecoli_MG1655_110721_PF_R1.fastq,MiSeq_Ecoli_MG1655_110721_PF_R2.fastq > MiSeqPE.frg
PBcR -length 500 -partitions 200 -I Pacbio_Illumina -s pacbio.spec -fastq subreads.fastq
genomeSize=4650000 MiSeqPE.frg
```

Statistics of CPBLR1a:
- seqs amount: 9993
- seq avg len: 2981.43
- total: 29.79 Mb
- depth: 6.41X

Statistics of CPBLR2a:
- seqs amount: 12123
- seq avg len: 3624.92
- total: 43.94 Mb
- depth: 9.45X

CPBLR1b & CPBLR2b: The filtered subreads (SMRT1 and SMRT2) were corrected to long reads (CPBLRs) by using ECTools (refer to ECTools for details) along with the Abyss-assembled unitigs.

Statistics of CPBLR1b:
- seqs amount: 22583
- seq avg len: 2626.54439
- total: 59.32 Mb
- depth: 12.76X

Statistics of CPBLR2b:
- seqs amount: 33259
- seq avg len: 2611.3382
- total: 86.85 Mb
- depth: 18.68X

CPBLR2c: We also used LSC 0.3.1 [3] to correct the filtered subreads (SMRT2) using the short reads. However, it took the long runtime of 19 hr in correcting long reads and the accuracy of CPBLRs were not as good as the long reads corrected by
PBcR pipeline (see S4 Table for details).

Statistics of CPBLR2c:
seqs amount: 29717
seq avg len: 2813.752
total: 83.62 Mb
depth: 17.98X

CPBLR2d: We used LoRDEC 0.4.1 [4] to correct the filtered subreads (SMRT2) using the short reads. It took the very short runtime of 7 min in correcting long reads:

```
lordec-correct -2
MiSeq_Ecoli_MG1655_110721_PF_R1.fastq, MiSeq_Ecoli_MG1655_110721_PF_R2.fastq -k 19 -s 3
-i subreads.fastq -o my-corrected-pacbio-reads-k19.fa
```

```
lordec-trim-split -i my-corrected-pacbio-reads-k19.fa -o my-corrected-pacbio-reads-k19-ts.fa
```

Statistics of CPBLR2d:
seqs amount: 52470
seq avg len: 1849.935
total: 97.07 Mb
depth: 20.87X

CPBLR2e&f: We used proovread 2.12 [5] to correct the filtered subreads (SMRT2) using the short reads and the Abyss-assembled unitigs along with the short reads. It took around two hours in correcting long reads:

```
SeqChunker -s 60M -o SMRT2-%03d.fstq subreads.fstq
SMRT2-001.fstq ~ SMRT2-004.fstq
proovread -l SMRT2-001.fstq -s MiSeq_Ecoli_MG1655_110721_PF_R1.fstq
MiSeq_Ecoli_MG1655_110721_PF_R2.fstq --pre SMRT2-001.cor
```

Statistics of CPBLR2e:
seqs amount: 28712
seq avg len: 2712.936
total: 77.89 Mb
depth: 16.75X

```
SeqChunker -s 60M -o SMRT2-%03d.fstq subreads.fstq
SMRT2-001.fstq ~ SMRT2-004.fstq
proovread -l SMRT2-001.fstq -s MiSeq_Ecoli_MG1655_110721_PF_R1.fstq
```
MiSeq_Ecoli_MG1655_110721_PF_R2.fastq -u Abyss.utg.fa --pre SMRT2-001.cor --coverage 50

....

Statistics of CPBLR2f:
seqs amount: 27670
seq avg len: 27796.4344
total: 77.38 Mb
depth: 16.64X

As depicted in the following flowchart, AHA [6], Cerulean [7] and SSPACE-LongRead [8] are scaffolders that are able to use long reads (e.g. SMRT2) for scaffolding pre-assembled contigs (e.g. Abyss-assembled contigs). We used Abyss to assemble the short reads produce by MiSeq and then performed various scaffolders along with the PacBio long reads (i.e., the filtered subreads). In addition, the long reads were corrected by LSC and PBcR pipeline using the short reads, also corrected by ECTools using the Abyss-assembled unitigs to produce corrected PacBio long reads (CPBLRs). We applied Patch to upgrade the draft assembly generated by Abyss to a hybrid assembly of high contiguous and accuracy. The QUAST-evaluated assembly results are shown in S4 Table. The commands we used are shown below:

AHA
input.xml
<?xml version="1.0"?>
<pacbioAnalysisInputs>
 <dataReferences>
 <!-- High-confidence sequences fasta -->
 <url ref="Abyss-contigs.fa ">
 <!-- PacBio reads, either in fasta or in bas.h5 format. -->

![Flowchart diagram](image-url)
source /opt/smrtanalysis/etc/setup.sh
smrtpipe.py --params=AHA.xml xml:input.xml

Cerulean 0.1.1
sawriter Abyss-contigs.fa
blasr subreads.fasta Abyss-contig.fa -minMatch 10 -minPctIdentity 70 -bestn 30 -nCandidates 30 -maxScore -500 -nproc 10 -noSplitSubreads -out mapping.fasta.m4
Cerulean.py --dataname Abyss --basedir for_cerulean --nproc 10

PBJelly.xml ##PBJelly (version 14.1.14)
<jellyProtocol>
 <reference> Abyss_cerulean.fasta</reference>
 <outputDir>Run_PBJelly</outputDir>
 <blasr>-minMatch 8 -minPctIdentity 70 -bestn 5 -nCandidates 20 -maxScore -500 -nproc 4 -noSplitSubreads</blasr>
 <input baseDir="Run_PBJelly/">
 <job>subreads.fastq</job>
 </input>
</jellyProtocol>

Jelly.py setup PBJelly.xml
Jelly.py mapping PBJelly.xml
Jelly.py support PBJelly.xml
Jelly.py extraction PBJelly.xml
Jelly.py assembly PBJelly.xml -x "--nproc=6"
Jelly.py output PBJelly.xml

SSPACE-LongRead 1.1
perl SSPACE-LongRead.pl -c Abyss-contigs.fa -p subreads.fastq -b Output

Unlike the above-mentioned scaffolders, Patch takes corrected long reads (CPBRLs) to improve pre-assembled contigs.

Patch
We have tried to scaffold the Abyss-assembled contigs by SSPACE-LongRead using the corrected long reads (CPBLR1a), but only got a similar result to using SMRT1 (see S4 Table)

SSPACE-LongRead 1.1
perl SSPACE-LongRead.pl -c Abyss-contigs.fa -p CPBLR.fasta -b Output

Furthermore, because AHA and SSPACE-LongRead are able to take any pre-assembled assembly as an input for scaffolding using long reads, we used SPAdes 2.5.0 [9] to pre-assemble the short reads. Additionally, recent integration of Illumina short and PacBio long reads was implemented in SPAdes 3.0 [10], we conducted SPAdes 3.0 to produce hybrid assemblies for *E. coli*. For the sake of simplicity, we used the identical CPBLRs (*i.e.*, CPBLR1a-CPBLR2b) to upgrade the SPAdes-assembled contigs.

SPAdes's assembly [SPAdes 2.5]
spades.py -t MiSeq_Ecoli_MG1655_110721_PF_R1.fastq -2
MiSeq_Ecoli_MG1655_110721_PF_R2.fastq -o Output

SPAdes's hybrid assembly [SPAdes 3.0]
spades.py -t MiSeq_Ecoli_MG1655_110721_PF_R1.fastq -2
In addition to concatenating the assemblies generated from a single assembler (Abyss or SPAdes), we applied Patch to the assemblies obtained from the hybrid method: Celera Assembler [11].

Please note that we have encountered the following error messages when the version of PBcR pipeline, 8.2 beta, was performed on the subreads of SMRT1 and SMRT 2, respectively. We therefore conducted Celera Assembler to assemble the corrected long reads via runCA directly.

"Error: after correction only 6.40719032258064X for genome 4650000. Not performing automated assembly"

"Error: after correction only 9.45052387096774X for genome 4650000. Not performing automated assembly"

Celera Assembler:
runCA -p asm -d asm -s asm.spec PacBio_Illumina.frg

Patch without splitting

patch.config
source=/path
in_ref=/assembly.fa
in_clr=/CPBLR.fasta
nucmer=/nucmer
makeblastdb=/makeblastdb
blastn=/blastn
patch.py patch.config

The QUAST-evaluated assembly results are shown in S4 Table.
For *Meiothermus ruber* DSM1279:

We have downloaded the 454 sequencing reads from the Sequence Read Archive (SRR017780), and the PacBio long read of single SMRT cell (m120803_041200) from http://files.pacb.com/software/hgap/index.html. The filtered subreads were produced by running smrtpipe.py (SMRT analysis) with the following params.xml.

```xml
<param name="minLength">
  <value>50</value>
</param>
<param name="readScore">
  <value>0.75</value>
</param>
<param name="minSubReadLength">
  <value>50</value>
</param>
```

Statistics of the filtered subreads (mruber.fastq):

- seqs amount: 36180
- seq avg len: 2490.721448
- total: 90.11 Mb
- depth: 29.07X

CPBLRs: The filtered subreads were corrected to long reads (CPBLRs) via invoking the PBcR command (8.2 beta) along with the 454 data:

```bash
fastqToCA -libraryname JR -technology 454 -reads JR.fastq > JR.frg
PBcR -length 500 -partitions 200 -I Pacbio_JR -s pacbio.spec -fastq mruber.fastq JR.frg  [28 min]
```

Statistics of CPBLRs:

- seqs amount: 32083
- seq avg len: 2076.73
- total: 66.63 Mb
- depth: 21.49X

Besides, we have assembled the short reads with Newbler.

```bash
newAssembly 'Project'
addRun 'Project' 'SRR017780.sff'
runProject 'Project' [10 min]
```
CPBLRs by ECTools: The filtered subreads were corrected to long reads (CPBLRs) by ECTools using the Newbler-assembled contigs:

Statistics of CPBLRs:
- seqs amount: 29282
- seq avg len: 2502.7752
- total: 73.29 Mb
- depth: 23.64X

Patch without splitting

`patch.config`
- `source=/patch`
- `in_ref=/454LargeContigs.fna`
- `in_clr=/PacBio_JR.fasta`
- `nucmer=/nucmer`
- `makeblastdb=/makeblastdb`
- `blastn=/blastn`

`patch.py patch.config`
For *Pedobacter heparinus* DSM2366:

We have downloaded the Illumina Miseq sequencing reads from the Sequence Read Archive (SRR812176), and the PacBio long read of single SMRT cell (m120803_023226) from http://files.pacb.com/software/hgap/index.html. The filtered subreads were produced by running smrtpipe.py (SMRT analysis).

Statistics of the filtered subreads (phep.fastq):

- seqs amount: 33630
- seq avg len: 2493.151561
- total: 83.84 Mb
- depth: 16.22X

CPBLRs: The filtered subreads were corrected to long reads (CPBLRs) via invoking the PBcR command (8.2 beta) along with the Miseq data:

```bash
fastqToCA -libraryname Miseq -insertsize 256 59 -mates SRR812176_1.fq, SRR812176_2.fq > Miseq.frg
PBcR -length 500 -partitions 200 -l Pacbio_Illumina -s pacbio.spec -fastq phep.fastq Miseq.frg
```

[1363 min]

Statistics of CPBLRs:

- seqs amount: 32775
- seq avg len: 2105.444119
- total: 69.01 Mb
- depth: 13.35X

Besides, we have assembled the short reads with Abyss.

```bash
abyss-pe k=143 name=Abyss in='SRR812176_1.fq SRR812176_2.fq' [90 min]
```

Patch without splitting

`patch.config`

```
source=/patch
in_ref=/Contigs.fasta
in_clr=/PacBio.fasta
nucler=/nucler
makeblastdb=/makeblastdb
blastn=/blastn
```

`patch.py patch.config`
SPAdes 3.0 was used in this dataset, but got the unsatisfied assembly:

`spades.py --12 SRR812176.fastq --pacaio phep.fastq -o output [673min]`

<table>
<thead>
<tr>
<th>Statistics without reference</th>
<th>contigs</th>
<th>scaffolds</th>
</tr>
</thead>
<tbody>
<tr>
<td># contigs</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>Largest contig</td>
<td>1 809 921</td>
<td>1 809 921</td>
</tr>
<tr>
<td>Total length</td>
<td>5 310 729</td>
<td>5 310 729</td>
</tr>
<tr>
<td>N50</td>
<td>1 265 182</td>
<td>1 265 182</td>
</tr>
</tbody>
</table>

Misassemblies

<table>
<thead>
<tr>
<th>Misassemblies</th>
<th>contigs</th>
<th>scaffolds</th>
</tr>
</thead>
<tbody>
<tr>
<td># misassemblies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Misassembled contigs length</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Mismatches

<table>
<thead>
<tr>
<th>Mismatches</th>
<th>contigs</th>
<th>scaffolds</th>
</tr>
</thead>
<tbody>
<tr>
<td># mismatches per 100 kbp</td>
<td>5.34</td>
<td>5.34</td>
</tr>
<tr>
<td># indels per 100 kbp</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td># N's per 100 kbp</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Genome statistics

<table>
<thead>
<tr>
<th>Genome statistics</th>
<th>contigs</th>
<th>scaffolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome fraction (%)</td>
<td>99.62</td>
<td>99.62</td>
</tr>
<tr>
<td>Duplication ratio</td>
<td>1.001</td>
<td>1.001</td>
</tr>
<tr>
<td># genes</td>
<td>4324 + 6 part</td>
<td>4324 + 6 part</td>
</tr>
<tr>
<td>NGA50</td>
<td>1 265 182</td>
<td>1 265 182</td>
</tr>
</tbody>
</table>
In addition to the three bacterial species, we have applied Patch to assemble *S. cerevisiae* W303 genome. The short and long reads were downloaded from http://schatzlab.cshl.edu/data/ectools/ [12]. The short reads were assembled by Abyss:

Abyss:

```
abyss-pe k=256 name=Abyss in= 'Illumina_500bp_2x300_R1.fastq Illumina_500bp_2x300_R2.fastq' [541 min]
```

Sequences of the sixteen SMRT cells produced from PacBio RS II system for *S. cerevisiae* (yeast) were available in the website. We have downloaded the PacBio raw reads in fasta format and extracted sequence reads that belong to a single SMRT cell (m131225_191238_42137). Subsequently, we scaffolded the Abyss-assembled contigs with the long reads by SSPACE-LongRead and corrected the long reads to CPBLRs by ECTools. SPAdes was used to hybrid assemble the short and long reads for yeast genome. Please note that we performed all analysis on a server (Intel Xeon E7-4820, 2.00GHz with 256 GB of RAM). However, SPAdes crashed on this server, the assembly was thus computed on another server with 512 GB of RAM. In addition, to utilize the CPBLRs by Patch, those sequences were *de novo* assembled by runCA. We also performed Patch to improve the runCA-assembled contigs.

Statistics of the filtered subreads (m131225_191238_42137.fa):

- seqs amount: 44116
- seq avg len: 5346.369231
- total: 235.73 Mb
- depth: 19.64X

SSPACE-LongRead 1.1

```
perl SSPACE-LongRead.pl -c Abyss-contigs.fa -p m131225_191238_42137.fa [81 min]
```
SPAdes's hybrid assembly [SPAdes 3.0]
spades.py -1 Illumina_500bp_2x300_R1.fastq -2 Illumina_500bp_2x300_R2.fastq --pacbio
m131225_191238_42137.fa -o output [5404 min, using a server with 512 GB of RAM]

Statistics of CPBLR (corrected.long.fa):
seqs amount: 21112
seq avg len: 7072.946997
total: 149.32 Mb
depth: 12.44X

Patch (Abyss + Patch)
patch.config
source=/patch
in_ref=/Abyss.ctg.fa
in_clr=/corrected.long.fa
nucmer=/nucmer
makeblastdb=/makeblastdb
blastn=/blastn
2bwt-builder=/2bwt-builder
soap=/soap
read1=/Illumina_500bp_2x300_R1.fastq
read2=/Illumina_500bp_2x300_R2.fastq
min_i=400
max_i=600

patch.py patch.config

Celera Assembler:
fastaToCA -l CorrectedLongRead -s corrected.long.fa -q ec.qual > my.frq
runCA ovlMinLen=100 ovlErrorRate=0.02 utgGraphErrorRate=0.01 utgGenomeSize=12000000
unitigger=bogart -p asm -d asm my.frq [825 min]

Patch without splitting (runCA + Patch)
patch.config
source=/patch
in_ref=/asm.ctg.fasta
in_clr=/corrected.long.fa
nucmer=/nucmer
makeblastdb=/makeblastdb
blastn=/blastn

patch.py patch.config
References:

