Supporting Information 1. Calculations.

Differential equations

The model used (Figure S1) can be described by the differential equations below. In the equations, \(W \) represents the number of uncolonized hospitalized patients (K- C-), \(X \) the number of hospitalized patients colonized with \(E.\ coli_{OXA-48} (K- C+) \), \(Y \) the number of hospitalized patients colonized with \(K.\ pneumoniae_{OXA-48} (K+ C-) \), and \(Z \) the number of hospitalized patients colonized with both (K+ C+). Since the hospital population size is constant, \(Z = N - (W + X + Y) \).

\(Ah \) to \(Dh \) represent the same types of individuals in the community with a high risk of readmission: \(Ah \) represents the number of uncolonized individuals (K- C-), \(Bh \) the number of individuals colonized with \(E.\ coli_{OXA-48} (K- C+) \), \(Ch \) the number of individuals colonized with \(K.\ pneumoniae_{OXA-48} (K+ C-) \), and \(Dh \) the number of individuals colonized with both (K+ C+). \(Al \) to \(Dl \) represent the same types of individuals in the community with a low risk of readmission.

\[
\frac{dW}{dt} = -\alpha W + \phi_1 Ah + \phi_2 Al - \beta_K \frac{Y + Z}{N} W - \beta_C \frac{X + Z}{N} W \\
\frac{dX}{dt} = -\alpha X + \phi_1 Bh + \phi_2 Bl + \beta_C \frac{X + Z}{N} W - \beta_K \frac{Y + Z}{N} X - \lambda_{CK} X \\
\frac{dY}{dt} = -\alpha Y + \phi_1 Ch + \phi_2 Cl + \beta_K \frac{Y + Z}{N} W - \beta_C \frac{X + Z}{N} Y - \lambda_{KC} Y \\
\frac{dAh}{dt} = \alpha W - \phi_1 Ah - \chi Ah + \gamma_C Bh + \gamma_K Ch \\
\frac{dBh}{dt} = \alpha X - \phi_1 Bh - \chi Bh + \gamma_K Dh - \gamma_C Bh - \lambda_{CK} Bh \\
\frac{dCh}{dt} = \alpha Y - \phi_1 Ch - \chi Ch + \gamma_K Dh - \gamma_C Ch - \lambda_{KC} Ch \\
\frac{dDh}{dt} = \alpha Z - \phi_1 Dh - \chi Dh - \gamma_K Dh - \gamma_C Dh + \lambda_{CK} Bh + \lambda_{KC} Ch \\
\frac{dAl}{dt} = \chi Ah - \phi_2 Al + \gamma_C Bl + \gamma_K Cl \\
\frac{dBl}{dt} = \chi Bh - \phi_2 Bl + \gamma_K Dl - \gamma_C Bl - \lambda_{CK} Bl \\
\frac{dCl}{dt} = \chi Ch - \phi_2 Cl + \gamma_K Dl - \gamma_C Cl - \lambda_{KC} Cl \\
\frac{dDl}{dt} = \chi Dh - \phi_2 Dl - \gamma_K Dl - \gamma_C Dl + \lambda_{CK} Bl + \lambda_{KC} Cl
\]
Figure S1. OXA-48 model.
(a) Model of population flow
(b) Within-host model in the hospital
(c) Within-host model in the community with a high risk of readmission
(d) Within-host model in the community with a low risk of readmission

K- C-: bla_{OXA-48} negative (both *K. pneumoniae* and *E. coli* are susceptible)
K- C+: *E. coli*_{OXA-48} (K. pneumoniae is susceptible)
K+ C-: *K. pneumoniae*_{OXA-48} (E. coli is susceptible)
K+ C+: *K. pneumoniae*_{OXA-48} and *E. coli*_{OXA-48}
Calculation of R_0 and R_A

R_0 was calculated using the methodology described in the book of Diekmann et al. [18] First, the transition matrix Σ was determined. In Σ, all changes of states except for cross-transmissions are incorporated:

$$
\begin{pmatrix}
-a - \lambda_{CK} & 0 & 0 & \phi_1 & 0 & 0 & \phi_2 & 0 & 0 \\
0 & -a - \lambda_{KC} & 0 & 0 & \phi_1 & 0 & \phi_2 & 0 & 0 \\
\lambda_{CK} & \lambda_{KC} & -a & 0 & 0 & \phi_1 & 0 & 0 & 0 \\
\alpha & 0 & 0 & -\gamma_{KC} - \lambda_{CK} - \phi_1 - \chi & 0 & \gamma_K & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & -\gamma_K - \lambda_{KC} - \phi_1 - \chi & \gamma_K & 0 & 0 & 0 \\
0 & 0 & \lambda_{CK} & \lambda_{KC} & -\gamma_{KC} - \phi_1 - \chi & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \chi & 0 & -\gamma_{KC} - \lambda_{CK} - \phi_2 & 0 & \gamma_K & 0 \\
0 & 0 & 0 & 0 & \chi & 0 & 0 & -\gamma_K - \lambda_{KC} - \phi_2 & \gamma_K \\
0 & 0 & 0 & 0 & 0 & \chi & \lambda_{CK} & \lambda_{KC} & -\gamma_{KC} - \phi_2 & \gamma_K
\end{pmatrix}
$$

Next, minus the inverse of $\Sigma (-\Sigma^{-1})$ is calculated. The elements of $-\Sigma^{-1}$ have a clear interpretation: the element $-(\Sigma^{-1})_{ij}$ is the expected time that an individual will spend in state i, given that it is currently in state j.

Thereafter, the next-generation matrix (NGM) can be calculated, using the cross-transmission parameters (β_K and β_C). Element ij of the NGM can be interpreted as the expected number of new colonizations starting in state i, caused by an infected individual in state j. Since a newly colonized person always starts his ‘colonized life’ in state X or Y, the NGM can be reduced to:

$$
\begin{pmatrix}
\beta_C \ast (-\Sigma^{-1})_{11} + (-\Sigma^{-1})_{31} & \beta_C \ast (-\Sigma^{-1})_{12} + (-\Sigma^{-1})_{32} \\
\beta_K \ast (-\Sigma^{-1})_{21} + (-\Sigma^{-1})_{31} & \beta_K \ast (-\Sigma^{-1})_{22} + (-\Sigma^{-1})_{32}
\end{pmatrix}
$$

R_0 is then the dominant eigenvalue of the NGM. An explicit expression for R_0 in terms of the model parameters does exist, but is too large to write down here.
For the calculation of R_A we only focused on the hospital dynamics (Figure S1B), ignoring readmissions. The transition matrix Σ is then:

$$
\begin{pmatrix}
-a - \lambda_{CK} & 0 & 0 \\
0 & -a - \lambda_{KC} & 0 \\
\lambda_{CK} & \lambda_{KC} & -a
\end{pmatrix}
$$

Using the same methodology as described above, the following NGM is obtained:

$$
\begin{pmatrix}
\beta_C & \beta_{C\lambda_{KC}} \\
\frac{\beta_C}{a} & \frac{\beta_{C\lambda_{KC}}}{a^2 + a\lambda_{KC}} \\
\frac{\beta_K}{a^2 + a\lambda_{CK}} & \frac{\beta_K}{a}
\end{pmatrix}
$$

Again, R_A is the dominant eigenvalue of this NGM.
Calculation colonization duration with HGT

In order to determine the influence of HGT on the duration of colonization with \(K.\ pneumoniae_{OXA-48}\) or \(E.\ coli_{OXA-48}\), we focused on the situation outside the hospital, where loss of colonization is possible (Figure S2). We will elaborate on the calculation of \(K.\ pneumoniae\); the calculation for \(E.\ coli\) is analogous.

The mean duration of colonization with \(K.\ pneumoniae_{OXA-48}\), as calculated from the data, is \(1/\gamma_k\). If HGT is included, then an individual can ‘start’ being colonized in state \(K+C^-\), or in state \(K+C^+\). \(T\) is defined as the mean duration of colonization with \(K.\ pneumoniae_{OXA-48}\) given a start in \(K+C^-\) and \(U\) is defined as the mean duration of colonization with \(K.\ pneumoniae_{OXA-48}\) given a start in \(K+C^+\). The following expressions can then be derived for \(T\) and \(U\):

\[
T = \frac{1}{\gamma_k + \lambda_{KC}} + \frac{\lambda_{KC}}{\gamma_k + \lambda_{KC}} U
\]

\[
U = \frac{1}{\gamma_k + \gamma_c} + \frac{\gamma_c}{\gamma_k + \gamma_c} T + \frac{\gamma_k}{\gamma_k + \gamma_c} \frac{\lambda_{CK}}{\gamma_c + \lambda_{CK}} U
\]

Solving these equations for \(T\) and \(U\) gives the following expression for \(T\):

\[
T = \frac{\gamma_c^2 + \lambda_{CK} \lambda_{KC} + \gamma_c \left(\gamma_k + \lambda_{CK} + \lambda_{KC} \right)}{\gamma_c \gamma_k \left(\gamma_c + \gamma_k + \lambda_{CK} + \lambda_{KC} \right)}
\]

The ratio of the duration of colonization with \(K.\ pneumoniae_{OXA-48}\) with and without HGT can then be calculated as:

\[
\frac{T}{\gamma_k T} = \gamma_k T
\]

Figure S2. OXA-48 model (community).

Representation of the model used to calculate the influence of HGT on the duration of colonization.