Supplementary information

All relevant data are within the paper and its Supporting Information files. Complete tables with the raw bioinformatics analysis outputs: mRNA-seq and SILAC proteomics calculations are included as supplementary files. We will provide an ftp link to whoever is interested in reanalyzing our data sets.

pCEP4 vector constructs

The primers used to amplify the EcoRI-J fragment from the pRIJ plasmid were:

5’-NheI

GTAGGACTAG gctagc CCA TAA AGC CTA GGG TGT AAA ACA CCG

3’-rev-BamHI

GTAGGACTAG gatcc CCC TTT ACA TGT TGT GGG TGC AAA ACT

5’-BglII

GTAGGACTAG agatct CCA TAA AGC CTA GGG TGT AAA ACA CCG

3’-rev NheI

GTAGGACTAG gctagc CCC TTT ACA TGT TGT GGG TGC AAA ACT

qRT-PCR assays

Primers used:

Actb

Left primer CCTTGCACATGCCGGAG

Right primer ACAGAGCCTCGCCTTTG

Adar1

Left primer AGTCCTCTAGCTGTGGTAGG

Right primer CTCTGTTGCCAAGCTGGAGT
Ebna-1
Left primer: AGCGATAGAGCAGGGCCCCCCGCAGAT
Right primer: CAAAAACCTCAGCAAATATATGAGTT

Eif2b4
Left primer GGAGGCTTGGACAGAGGG
Right primer GTGACATCAGACAGACCGTTG

Fcrla
Left primer TGGAAGGATAGTGCAAAGCA
Right primer AGGAGCTGGATTCAATGTGG

Fcrlb
Left primer GTGTATCGATGCGACACACG
Right primer AGACCACCTTGTCTGACCA

Fcrl1
Left primer TGATGAGCCTGTGCTGTGCT
Right primer AGGGCATCTTACACGTACGG

Fcrl2
Left primer CCTTATGAAAAATGCTTGAGGCT
Right primer CAGTGTCTGGATGTAGCAGCA

Fcrl3
Left primer AGTGAAGGGGTTTCCCATATG
Right primer GCCAGGAGCTGCTACTCAG

Fcrl4
Left primer GCACAAATTTTGTTGAATTG
Right primer CTGTGCAGGCAGAAGTGAAG

Fcrl5

Left primer CGCAGTGAGATGGTGACACT

Right primer GGGGGACGACCTATTTCTTA

Il10

Left primer CATGCTTTCGAGATCTCCGAG

Right primer GCATCACCTCCTCCAGGTAA

Pik3ap1

Left primer GCGACATCCTCATCTACA

Right primer TGCTGAGGAAAAGGCTTAGG

Vegfa

Left primer CAACTTCTGGGCTGTTCCTCG

Right primer GGCTGGAGCACTGTCTGC

Zeb1

Left primer CTGTGAAGGTGTACCAGAGGATGA

Right primer TTCTGCATCTGACTCGCATT

EBER1

Left primer AGGACCTACGCTGCCCTAGA

Right primer AAAACATGCGGACCACCAGC

SILAC bioinformatics data analysis

For data analysis, we used the software MaxQuant-Andromeda [1]. The parameters used were the same as in our previous publication [2]. As a matter of caution, we performed a manual inspection of the highest SILAC ratios with ≥ 2 counts and determined that the identification of
CPSF3 was not correct (despite its decent score) since the peptide sequenced was missing a trypsine-derived amino acid Arg or Lys (File S1-SILAC). We did not include this identification in our analysis.

Sample submission and data collection for mRNA-seq experiments

RNA samples were submitted to the Yale Center for Genomic Analysis (YCA) and their integrity was determined in a Bioanalyzer (Agilent). Only samples having an RNA integrity number (RIN) close to 10 (the highest score) were considered for library preparation. Staff at the YCA prepared cDNA libraries from mRNA (poly-A selected) using an in-house protocol.

A recent study in B cells determined that about 100 million reads (50bp, paired-end) are enough to capture confident measurements of more than 80% of total mRNA levels and 90% of individual transcript isoforms [3]. Furthermore, the initial publication describing Cufflinks made use of about 200 million reads, 75bp paired-end per sample [4].

Based on this study, we collected 75bp paired-end reads in HiSeq2000 and HiSeq2500 Illumina sequencers. In the first replicate, we collected 200-250 million paired-end reads. In the second replicate, we collected half that amount, approximately 100 million paired-end reads per sample. The sequencing data was preprocessed and made available by YCA’s staff.

Bioinformatics transcript analysis using the Tuxedo suite of tools

To calculate gene expression levels, we used the Tuxedo bioinformatics suite – TopHat, Cufflinks and Cuffdiff tools [5]. To obtain information compatible with the proteomics data, we used the highly curated gene models provided by RefSeq to align reads, and assembled transcripts with Tuxedo. We used TopHat 2.0.08 to align paired-end reads guided by known gene models and the following command-line: tophat2 -g 1 -p 16 --no-novel-indels -G /genes.gtf -z pigz -o TopHat-output /Bowtie2Index/genome /left-reads.fastq /right-reads.fastq. The file
genes.gtf was the most recent RefSeq file with annotated gene models from the human genome.

We used the latest genome hg19 in our analysis.

Next, we used Cufflinks 1.3.0 for transcript assembly with the following command-line:

cufflinks -p 16 -v -u -b /genome.fa -G /genes.gtf -o Cufflinks-output TopHat-output.bam.

For the quantitative comparison, we compiled the Cufflinks output files (replicates from different samples) with Cuffmerge 1.3.0, followed by Cuffdiff 1.3.0, using the following command-line:

cuffdiff -p 16 -u -b /genome.fa -o Cuffdiff-output /Cuffmerge-merged.gtf /CTL-1st-replicate-
TopHat-output.bam, /CTL-2nd-replicate-TopHat-output.bam /EBER-1st-replicate-TopHat-
output.bam, /EBER-2nd-replicate-TopHat-output.bam.

As for total mRNA abundances, we used Cufflinks and Cuffdiff to obtain alternative isoform levels, using RefSeq gene models to align reads and assemble transcripts [5]. We first extracted the list of transcript isoforms up- and downregulated with a significant q-value. We then focused on relevant isoform switch events due to alternative splicing and promoter (significant Jensen-Shannon divergence metric, √JS and the corresponding q-values), and that in most cases correlate to unchanged total mRNA levels.

Statistics of the alignments

We determined the quality of our datasets with the python script bamstat.py from the RNA-seq quality control suite of tools RSeQC [6].

The statistics were as follows:

BJAB-CTL first replicate

mapq >= mapq_cut (unique): 426642298
Read-1: 210982657
Read-2: 215659641
Reads map to '+': 213577511
Reads map to '-': 213064787
Non-splice reads: 307766108
Splice reads: 118876190
Reads mapped in proper pairs: 338398104
Proper-paired reads map to different chrom: 6218

BJAB-EBER1/2 first replicate

mapq >= mapq_cut (unique): 423658996
Read-1: 212291159
Read-2: 211367837
Reads map to '+': 212077843
Reads map to '-': 211581153
Non-splice reads: 302193094
Splice reads: 121465902
Reads mapped in proper pairs: 38318566
Proper-paired reads map to different chrom: 7190

BJAB-CTL second replicate

mapq >= mapq_cut (unique): 177833283
Read-1: 90619933
Read-2: 87213350
Reads map to '+': 89027972
Reads map to '-': 88805311
Non-splice reads: 133781987
Splice reads: 44051296

Reads mapped in proper pairs: 70859470

Proper-paired reads map to different chrom: 1810

BJAB-EBER1/2 second replicate

mapq \(\geq\) mapq_cut (unique): 184885299

Read-1: 94127857

Read-2: 90757442

Reads map to '+' : 92567915

Reads map to '-' : 92317384

Non-splice reads: 140079661

Splice reads: 44805638

Reads mapped in proper pairs: 108012470

Proper-paired reads map to different chrom: 2368

BJAB-EBNA1-EBER1/2 first replicate

mapq \(\geq\) mapq_cut (unique): 520711593

Read-1: 260338391

Read-2: 260373202

Reads map to '+' : 260797994

Reads map to '-' : 259913599

Non-splice reads: 377311579

Splice reads: 143400014

Reads mapped in proper pairs: 277509232

Proper-paired reads map to different chrom: 6618
BJAB-EBNA1 first replicate

mapq >= mapq_cut (unique): 535731196
Read-1: 268042586
Read-2: 267688610
Reads map to '+': 268328460
Reads map to '-': 267402736
Non-splice reads: 391772943
Splice reads: 143958253
Reads mapped in proper pairs: 304972136
Proper-paired reads map to different chrom: 7458

BJAB-EBNA1-EBER1/2 second replicate

mapq >= mapq_cut (unique): 117936279
Read-1: 59813905
Read-2: 58122374
Reads map to '+': 59016615
Reads map to '-': 58919664
Non-splice reads: 85389074
Splice reads: 32547205
Reads mapped in proper pairs: 16211722
Proper-paired reads map to different chrom: 756

BJAB-EBNA1 second replicate

mapq >= mapq_cut (unique): 114792438
Read-1: 58471765
Read-2: 56320673
Reads map to '+': 57424395
Reads map to '-': 57368043
Non-splice reads: 84155995
Splice reads: 30636443
Reads mapped in proper pairs: 8084824
Proper-paired reads map to different chrom: 768

Data parsing and gene ontology interpretation

To interpret our data, we manually parsed the Cuffdiff output files by converting them to Excel spreadsheets. We used simple scripts to make pair-wise file comparisons and plotted data with IgorPro 5.00. To interpret our data in terms of annotated gene/protein functions, we used the Database for Annotation, Visualization and Integrated Discovery (PORTAL) online source [7]. We searched a list of gene names up- or downregulated significantly according to Cuffdiff’s q-value calculation, in DAVID using custom settings. In the DAVID portal, we focused on the output from the Protein Analysis Through Evolutionary Relationships (PANTHER) classification system [8]. We sorted the GO categories by fold-enrichment, and indicated their p-value. We also inspected the annotated functions of gene/protein names of interest in UniProt (http://www.uniprot.org/).

ADAR-mediated A-to-G analysis

To investigate the frequency of A-to-G events in our samples, we performed a bioinformatics analysis of each mRNA-seq dataset with a pipeline that included use of the following bioinformatics tools: BWA-0.6.2, SAMtools-0.1.18, Picard-Tools-1.72, GATK-2.4-3, BAMTools and BEDTools-2.17-0 [9-11].
The analysis pipeline, briefly described, was as follows:

1) Paired-end read alignment with Burrows-Wheeler Aligner (BWA).

2) Low-quality read end-trimming with CleanSam.jar (Picard-Tools).

3) Conversion of alignment files from the SAM (Sequence Alignment/Map) format to a binary version (BAM) with SAMtools.

4) Preparation of GATK (Genome Analysis Tools Kit) input files – processing each BAM file stepwise with the following Picard-Tools: SortSam.jar, FixMates.jar, MarkDuplicates.jar, AddReadGroups.jar and SortOrder.jar.

5) BAM file indexing with BAMTools.

6) “Variant calling” with Genome Analysis Tool Kit (GATK) following the “Best Practices” recommended workflow (http://www.broadinstitute.org/gatk/guide/best-practices).

The GATK pipeline was as follows: RealignerTargetCreator, IndelRealigner, BaseRecalibrator, PrintReads, ReduceReads, UnifiedGenotyper (multiple inputs simultaneously), VariantAnnotator, VariantRecalibrator, ApplyRecalibration and SelectVariants.

The filters applied in the UnifiedGenotyper step were: -min_base_quality_score 25 -stand_call_conf 60 -stand_emit_conf 60 -dcov 100 -A QualByDepth -A FisherStrand -A DepthPerAlleleBySample -A HomopolymerRun.

7) Data parsing with BEDTools to remove known single nucleotide polymorphisms (SNPs), and extract A-to-G variants that occur in Alu repeats.

8) A-to-G frequency. Each base with a “variant call” had a number of reads per reference nucleotide (AD-REF) and alternative nucleotide (AD-ALT). We calculated the A-to-G frequency as AD-ALT/(ALT-REF + AD-ALT). We only considered AD-ALT values ≤ 2.

Western blots
The following antibodies were used:

Cell Signaling Technology: Phospho-Akt (Ser473) (193H12); Akt (9272); and ZEB1 (D80D3); and Abcam: ADAD2 (ab105737); eIF2B4 (ab96596); and PIK3AP1 (ab124031).

References

