Supporting Information of

Excess Relative Risk as an Effect Measure in Case-Control Studies of Rare Diseases

Author: Wen-Chung Lee

Author’s affiliation: Research Center for Genes, Environment and Human Health,

and Institute of Epidemiology and Preventive Medicine,

College of Public Health, National Taiwan University, Taipei, Taiwan.

Correspondence & reprint requests: Prof. Wen-Chung Lee,

Rm. 536, No. 17, Xuzhou Rd., Taipei 100, Taiwan.

(FAX: 886-2-23511955)

(e-mail: wenchung@ntu.edu.tw)
S6 Exhibit. A proof that if the exposure under study is only associated with a specific disease entity, excess relative risk (ERR) for the exposure and this disease entity will be greater than that for the exposure and the disease as a whole.

Assumed that the disease under study is composed of two disease entities \(D_I \) and \(D_{II} \) and that the exposure under study \(E \) has no effect whatsoever on the occurrence of \(D_{II} \), that is,
\[
\Pr(D_{II} = 1 | E = 1) = \Pr(D_{II} = 1 | E = 2).
\]
We see that the excess risk ratio quantifying the relation between \(E \) and \(D \) (the \(D_I \) and \(D_{II} \) combined) is less than that between \(E \) and \(D_I \):
\[
\frac{\Pr(D = 1 | E = 1) - \Pr(D = 1 | E = 2)}{\Pr(D = 1 | E = 2)} = \frac{[\Pr(D_I = 1 | E = 1) + \Pr(D_{II} = 1 | E = 1)] - [\Pr(D_I = 1 | E = 2) + \Pr(D_{II} = 1 | E = 2)]}{\Pr(D_I = 1 | E = 2) + \Pr(D_{II} = 1 | E = 2)} < \frac{\Pr(D_I = 1 | E = 1) - \Pr(D_I = 1 | E = 2)}{\Pr(D_I = 1 | E = 2)} = \text{ERR}_I.
\]