Dentate Gyrus Circuitry Features Improve Performance of Sparse Approximation Algorithms

Panagiotis C. Petrantonakis and Panayiota Poirazi
Foundation for Research and Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology, N. Plastira 100 GR-70013, Heraklion, Greece

Iterative Soft Thresholding algorithm

This section describes the derivation of the Iterative Soft Thresholding (IST) algorithm based on the Majorization-Minimization (MM) optimization process and on l_1 norm denoising [1].

The problem that IST deals with is the estimation of a vector x based on measurements y, with:

$$ y = Ax $$ \hspace{1cm} (S1)

where A is the matrix representing the measurement process. Hence, the approach is to estimate x from y by minimizing the function:

$$ J(x) = \|y - Ax\|^2_2 + \lambda \|x\|_1 \hspace{1cm} (S2) $$

where $\|\cdot\|_n$ denotes the n-norm of the corresponding vector. In (S2), the first term represents the discrepancy between y and x and the second term is a penalty function. The λ parameter, is a positive value and determines the tradeoff between the two terms of equation S2.

The MM procedure [2] replaces a difficult to minimize problem to a sequence of simpler ones. Assuming that the minimization of the function $J(x)$ is a difficult optimization problem, MM process defines a series of new functions, i.e., $G_k(x)$, which majorize $J(x)$ and tries to minimize them in order to conclude to the x that minimizes the original $J(x)$. Thus, MM is an iterative process where, at each iteration, a vector x_k is found which ultimately converges to the minimum of function $J(x)$. The iterative process is described as:

1. Set $k = 0$. Initialize $x_k = x_0$
2. Define $G_k(x)$ such that:
a. \(G_k(x) \geq J(x) \forall x \)
b. \(G_k(x_k) = J(x_k) \)

3. Find the minimizer of \(G_k(x) \), i.e., \(x_{k+1} \)

4. Set \(k \leftarrow k + 1 \), go to step 2

Now, we will dissect the minimization problem by finding the minimizer of the first part of Eq. S2 and subsequently the minimizer of the second part. By combining the two solutions we will end up with the minimizer of Eq. S2.

If we want to minimize the first term of Eq. S2 we set:

\[
J(x) = \| y - Ax \|^2_2 = (y - Ax)^t(y - Ax) = y^t y - 2y^t Ax + x^t A^t Ax
\]
\[(S3)\]

By setting the derivative of \(S3 \) to zero we get:

\[
\frac{\partial}{\partial x} J(x) = 0 \Rightarrow -2A^t y + 2A^t Ax = 0
\]

Thus,

\[
x = (A^t A)^{-1} A^t y
\]
\[(S4)\]

Hence the minimization of \(S3 \) requires the solution of a system of linear equations. If the \(x \) vector is very large the computational burden of the solution may be huge. In order to avoid the solution of the system of equations we can use the MM process and define a new series of \(G_k(x) \) that coincides with \(J(x) \) at \(x_k \) but otherwise majorizes \(J(x) \).

Thus, we define:

\[
G_k(x) = \| y - Ax \|^2_2 + (x - x_k)^t (bI - A^t A)(x - x_k)
\]
\[(S5)\]

which fulfills the constraints imposed by MM, as \(G_k(x_k) = J(x_k) \) and the second part of \(S5 \) is non-negative as soon as \(b \) is greater or equal to the maximum eigenvalue of \(A^t A \):

\[
b \geq \max \text{ eig}(A^t A)
\]
\[(S6)\]

securing that \(G_k(x) \geq J(x) \forall x \). Now, in order to obtain \(x_{k+1} \) we need to minimize \(G_k(x) \). Thus:

\[
\frac{\partial}{\partial x} G_k(x) = 0 \Rightarrow
\]

\[
-2A^t y - 2(bI - A^t A)x_k + 2bx = 0 \Rightarrow
\]

\[
x = x_k + \frac{1}{a} A^t (y - Ax_k)
\]

Hence, with the MM procedure, we obtain:
Thus, Eq. S7 defines the procedure that minimizes the function \(J(x) \) of Eq. S3.

In order to incorporate the \(l_1 \)-norm part of the Eq. S2, we consider the minimization of a simpler form of Eq. S3, where \(A = I \) but with the regularizing term of the \(l_1 \)-norm. Thus:

\[
J(x) = ||y - x||_2^2 + \lambda ||x||_1
\]
(S8)

It is not possible to differentiate \(J(x) \) as the \(l_1 \) norm is not a differentiable function. Instead, we expand Eq. S8:

\[
J(x) = (y_1 - x_1)^2 + \lambda |x_1| + \cdots + (y_N - x_N)^2 + \lambda |x_N|
\]
(S9)

And we can minimize Eq. S9 by simply minimizing each individual part, i.e., by minimizing:

\[
j(x) = (y - x)^2 + \lambda |x|
\]
(S10)

Taking the derivative we have:

\[
\frac{d}{dx} j(x) = 0 \Rightarrow
\]

\[
-2(y - x) + \lambda \text{ sign}(x) = 0 \Rightarrow
\]

\[
y = x + \frac{\lambda}{2} \text{ sign}(x)
\]
(S11)

By solving Eq. S11 for \(x \) it is proved that the minimizer of \(j(x) \) by applying the soft threshold rule to \(y \) with threshold \(\frac{\lambda}{2} \). Thus the minimization of Eq. S8 is accomplished by:

\[
x = \eta_s \left(y, \frac{\lambda}{2} \right)
\]
(S12)

where

\[
\eta_s(z, th) := \text{sign}(z) \max(0, |z| - th)
\]

Finally, by combining the minimizers of Eq. S3 and S8 we end up with the minimizer of Eq. S2, i.e., the IST algorithm:

\[
x_{k+1} = \eta_s(x_k + \kappa A_t^t(y - Ax_k), \frac{\lambda}{2b})
\]
(S13)
Where \(\kappa = \frac{1}{b} \) and \(b \geq \max \ e i g (A^t A) \). In this work we used \(\lambda = 0.1 \).

Compressed Sensing

The CS theory originates from the field of high-dimensional statistics [3], and introduces a novel sampling process that goes against the common wisdom in data acquisition, i.e., Shannon-Nyquist Sampling theorem. CS theory asserts that one can recover certain signals from far fewer samples or measurements than traditional methods use [4].

Let \(f \) be the \(N \)-dimensional signal that we wish to measure/sample. Now let \(y \) be a sampled vector from \(f \) with length \(M < N \). We can express the relationship between the signal and the sampled vector as \(y = \Phi f \), where \(\Phi \) is an \(M \times N \) sampling matrix (the matrix that performs the projection from one space to another).

Furthermore, assume that the given signal can be represented by a basis set according to the equation \(f = \Psi x \), where \(\Psi \) is a \(N \times N \) matrix whose columns are the components of the basis set, and \(x \) is the \(N \times 1 \) vector which contains the coefficients that analyze the signal \(f \) in basis \(\Psi \).

According to the CS theory, the encoding of a given signal is a simple, linear sampling/measurement process whereby \(y = Ax \) and \(A = \Phi \Psi \) (actualy equations \(f = \Psi x \) and \(y = \Phi f \) are combined). Matrix \(A \) is frequently referred as the measurement or the sensing matrix. Thus, having determined the \(x \) vector according to basis \(\Psi \), we can extract a measurement/sampling vector by a mere matrix multiplication.

One crucial result of CS is that with overwhelming probability, by random measurements, e.g., i.i.d. entries from a symmetric Bernoulli distribution, only:

\[
M \geq C \cdot a \cdot \log(N/a)
\]

(S14)
samples are needed for efficient reconstruction (\(C \) is an application specific constant and \(a \) is the sparsity measure of vector \(x \)). It can be proved that randomized sampling along with an \(l_1 \) minimization process as a decoding procedure, i.e., estimation of vector \(x \) by using measurements \(y \), constitute a near-optimal sensing strategy [4]. Thus, in this work we used S14 for the determination of the size of the \(y \) vector with \(C = 1 \).
References

