Exhibit S1. Derivation of the likelihood function for a case-base study under the assumptions of gene-environment independence and Hardy-Weinberg equilibrium.

In a case-base study, the recruitment process depends on a subject’s disease status but not on his/her genotype and exposure status, that is,

$$
Pr(S_0 + S_i \geq 1 \mid D, G, E) = Pr(S_0 + S_i \geq 1 \mid D, G) = Pr(S_0 + S_i \geq 1 \mid D).
$$

From Equation (9) in text, we have,

$$
Pr(D = 0, G \mid E, S_0 + S_i \geq 1) = Pr(D = 0 \mid E, S_0 + S_i \geq 1) \times Pr(G \mid D = 0, E, S_0 + S_i \geq 1) \\
= Pr(D = 0 \mid E, S_0 + S_i \geq 1) \times \frac{Pr(S_0 + S_i \geq 1 \mid D = 0, G, E) \times Pr(G \mid D = 0, E) \times Pr(D = 0, E)}{Pr(S_0 + S_i \geq 1 \mid D = 0, E) \times Pr(D = 0, E)} \\
= Pr(D = 0 \mid E, S_0 + S_i \geq 1) \times Pr(G \mid D = 0, E) \\
= Pr(D = 0 \mid E, S_0 + S_i \geq 1) \times Pr(G = 0 \mid D = 0) \times \exp(G_i \log 2 + \delta G).
$$

From Model (8) in text, we have

$$
Pr(D = 1, G \mid E, S_0 + S_i \geq 1) \\
= Pr(D = 0, G \mid E, S_0 + S_i \geq 1) \times \exp(\mu^* + \alpha_1 G_i + \alpha_2 G_2 + \beta E + \gamma_1 G_i E + \gamma_2 G_2 E),
$$

and therefore,

$$
Pr(D = 1, G \mid E, S_0 + S_i \geq 1) = Pr(D = 0 \mid E, S_0 + S_i \geq 1) \times Pr(G = 0 \mid D = 0) \\
\times \exp(G_i \log 2 + \delta G + \mu^* + \alpha_1 G_i + \alpha_2 G_2 + \beta E + \gamma_1 G_i E + \gamma_2 G_2 E).
$$

We see that both $Pr(D = 1, G \mid E, S_0 + S_i \geq 1)$ and $Pr(D = 0, G \mid E, S_0 + S_i \geq 1)$ have the same multiplier: $Pr(D = 0 \mid E, S_0 + S_i \geq 1) \times Pr(G = 0 \mid D = 0)$. It immediately follows that the
likelihood function for a case-base study under the dual assumptions of gene-environment independence and Hardy-Weinberg equilibrium is

\[
\Pr(D, G \mid E, S_0 + S_1 \geq 1) = \frac{\exp(G_1 \log 2 + \delta G + \mu^* D + \alpha_1 G_1 D + \alpha_2 G_2 D + \beta ED + \gamma_1 G_1 ED + \gamma_2 G_2 ED)}{\sum_{d=0}^{1} \sum_{g=0}^{2} \exp(g_1 \log 2 + \delta g + \mu^* d + \alpha_1 g_1 d + \alpha_2 g_2 d + \beta Ed + \gamma_1 g_1 Ed + \gamma_2 g_2 Ed)}.
\]