Supplementary code

The MATLAB® code, consisting of the functions cda.m and order.m and used for simulations of the double-auction model is listed below.

```matlab
function cda(N,n,ratio,nevents,nruns)
% INPUT arguments
% N <- upper limit for prices
% n <- size of interval for placing orders around bestask/bestbid/last price
% ratio <- lambda/mu; ratio between limit orders and market orders arrival rate;
% can be scalar or vector
% nevents <- number of events of placing either limit or market order
% nruns <- number of Monte Carlo steps
% 
% OUTPUT arguments (saved in .mat file):
% descriptive statistics - mean, standard deviation, skewness,
% kurtosis of series of returns and autocorrelation at the 
% first lag of absolute returns (c_1)
% ret - the last series of returns
% P - the last series of prices
% 
% initial price : ceil(N/2)
% Options for calculating the returns - go to line 122
% default: logarithmic return

tic;

ma = 3; % market sell order rate
mb = 3; % market buy
rs = size(ratio); rs = rs(2);
retmean = zeros(nruns,rs);
retstd = zeros(nruns,rs);
retskew = zeros(nruns,rs);
rekturt = zeros(nruns,rs);
acorr = zeros(nruns,rs);

for r = 1:rs % loop for different ratios
  lb = ratio(r)*ma;
  la = ratio(r)*mb;

  for i = 1:nruns
    % state of the order book
    X = zeros(1,N);

    % initialization
    price = ceil(N/2);
  end
end
```

Ergodic transition in a simple model of the continuous double auction
P = [0 price];
bestbid = 0;
bestask = 0;
k = 0; T = 0;

while k < nevents
 k = k + 1;
 [event, t] = order(la,lb,ma,mb); % choose type of the order
 T = T + t;
 if event == 1 % limit order bid
 if bestask==0
 if price <= n
 p = randi(price);
 else
 p = price - (randi(n+1) - 1);
 end
 else
 if bestask == 1
 continue
 elseif bestask <= n
 p = bestask - randi(bestask-1);
 else
 p = bestask - randi(n);
 end
 end
 X(p) = X(p) - 1; % new bid
 elseif event == 2 % limit order ask
 if bestbid==0
 if price > N - n
 p = price + randi(N-price+1) - 1;
 else
 p = price + randi(n+1) - 1;
 end
 else
 if bestbid == N
 continue
 elseif bestbid > N - n
 p = bestbid + randi(N-bestbid);
 else
 p = bestbid + randi(n);
 end
 end
 X(p) = X(p) + 1; % new ask
 elseif event == 3 % market buy
 if bestask==0
 X(bestask) = X(bestask) - 1;
 price = bestask;
 P = [P; T price];
 end
 else % market sell
 if bestbid==0
 X(bestbid) = X(bestbid) + 1;
 price = bestbid;
 P = [P; T price];
 end
 end
end
The additional function `order` called by the main function is the following.

```
function [event, t] = order(la,lb,ma,mb)
    c = la + lb + ma + mb;
    x = rand(1);
    if x < lb/c
        event = 1; % limit bid
        t = -log(rand(1))/c;
    elseif x < (lb + la)/c
        event = 2; % limit ask
        t = -log(rand(1))/c;
    elseif x < (lb+la+mb)/c
        event = 3; % market buy
        t = -log(rand(1))/c;
    else
        event = 4; % market sell
        t = -log(rand(1))/c;
    end
end
```