<table>
<thead>
<tr>
<th>Concentration (μM)</th>
<th>Image</th>
<th>Manual</th>
<th>Algorithm</th>
<th>O.Seg* (%)</th>
<th>U.Seg* (%)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.78 μM</td>
<td>Image 1</td>
<td>243</td>
<td>245</td>
<td>5 (2.06 %)</td>
<td>3 (1.23 %)</td>
<td>8 (3.29 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>262</td>
<td>265</td>
<td>7 (2.67 %)</td>
<td>4 (1.53 %)</td>
<td>11 (4.20 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>251</td>
<td>249</td>
<td>4 (1.59 %)</td>
<td>6 (2.39 %)</td>
<td>10 (3.98 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>235</td>
<td>238</td>
<td>6 (2.55 %)</td>
<td>3 (1.28 %)</td>
<td>9 (3.83 %)</td>
</tr>
<tr>
<td>1.56 μM</td>
<td>Image 1</td>
<td>258</td>
<td>252</td>
<td>1 (0.39 %)</td>
<td>7 (2.71 %)</td>
<td>8 (3.10 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>255</td>
<td>250</td>
<td>2 (0.78 %)</td>
<td>7 (2.75 %)</td>
<td>9 (3.53 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>263</td>
<td>261</td>
<td>5 (1.90 %)</td>
<td>7 (2.66 %)</td>
<td>12 (4.56 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>279</td>
<td>286</td>
<td>8 (2.87 %)</td>
<td>1 (0.36 %)</td>
<td>9 (3.23 %)</td>
</tr>
<tr>
<td>3.13 μM</td>
<td>Image 1</td>
<td>280</td>
<td>281</td>
<td>7 (2.50 %)</td>
<td>6 (2.14 %)</td>
<td>13 (4.64 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>260</td>
<td>266</td>
<td>9 (3.46 %)</td>
<td>3 (1.15 %)</td>
<td>12 (4.62 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>252</td>
<td>251</td>
<td>2 (0.79 %)</td>
<td>3 (1.19 %)</td>
<td>5 (1.98 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>273</td>
<td>270</td>
<td>3 (1.10 %)</td>
<td>6 (2.20 %)</td>
<td>9 (3.30 %)</td>
</tr>
<tr>
<td>6.25 μM</td>
<td>Image 1</td>
<td>272</td>
<td>275</td>
<td>6 (2.21 %)</td>
<td>3 (1.10 %)</td>
<td>9 (3.31 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>289</td>
<td>288</td>
<td>5 (1.73 %)</td>
<td>6 (2.08 %)</td>
<td>11 (3.81 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>263</td>
<td>262</td>
<td>4 (1.52 %)</td>
<td>5 (1.90 %)</td>
<td>9 (3.42 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>274</td>
<td>273</td>
<td>3 (1.09 %)</td>
<td>4 (1.46 %)</td>
<td>7 (2.55 %)</td>
</tr>
<tr>
<td>12.5 μM</td>
<td>Image 1</td>
<td>281</td>
<td>286</td>
<td>9 (3.20 %)</td>
<td>4 (1.42 %)</td>
<td>13 (4.63 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>278</td>
<td>279</td>
<td>4 (1.44 %)</td>
<td>3 (1.08 %)</td>
<td>7 (2.52 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>281</td>
<td>280</td>
<td>4 (1.42 %)</td>
<td>5 (1.78 %)</td>
<td>9 (3.20 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>259</td>
<td>255</td>
<td>3 (1.16 %)</td>
<td>7 (2.70 %)</td>
<td>10 (3.86 %)</td>
</tr>
<tr>
<td>25.0 μM</td>
<td>Image 1</td>
<td>281</td>
<td>277</td>
<td>4 (1.42 %)</td>
<td>8 (2.85 %)</td>
<td>12 (4.27 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>275</td>
<td>271</td>
<td>3 (1.09 %)</td>
<td>7 (2.55 %)</td>
<td>10 (3.64 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>264</td>
<td>269</td>
<td>7 (2.65 %)</td>
<td>2 (0.76 %)</td>
<td>9 (3.41 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>296</td>
<td>301</td>
<td>8 (2.70 %)</td>
<td>3 (1.01 %)</td>
<td>11 (3.72 %)</td>
</tr>
<tr>
<td>50.0 μM</td>
<td>Image 1</td>
<td>289</td>
<td>295</td>
<td>8 (2.77 %)</td>
<td>2 (0.69 %)</td>
<td>10 (3.46 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>277</td>
<td>281</td>
<td>7 (2.53 %)</td>
<td>3 (1.08 %)</td>
<td>10 (3.61 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>274</td>
<td>279</td>
<td>7 (2.55 %)</td>
<td>2 (0.73 %)</td>
<td>9 (3.28 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>301</td>
<td>304</td>
<td>7 (2.33 %)</td>
<td>4 (1.33 %)</td>
<td>11 (3.65 %)</td>
</tr>
<tr>
<td>100 μM</td>
<td>Image 1</td>
<td>285</td>
<td>292</td>
<td>8 (2.81 %)</td>
<td>1 (0.35 %)</td>
<td>9 (3.16 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>298</td>
<td>302</td>
<td>7 (2.35 %)</td>
<td>3 (1.01 %)</td>
<td>10 (3.36 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>287</td>
<td>294</td>
<td>9 (3.14 %)</td>
<td>2 (0.70 %)</td>
<td>11 (3.83 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>314</td>
<td>322</td>
<td>9 (2.87 %)</td>
<td>1 (0.32 %)</td>
<td>10 (3.18 %)</td>
</tr>
<tr>
<td>200 μM</td>
<td>Image 1</td>
<td>300</td>
<td>308</td>
<td>10 (3.33 %)</td>
<td>2 (0.67 %)</td>
<td>12 (4.00 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>302</td>
<td>305</td>
<td>6 (1.99 %)</td>
<td>3 (0.99 %)</td>
<td>9 (2.98 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>326</td>
<td>332</td>
<td>7 (2.15 %)</td>
<td>1 (0.31 %)</td>
<td>8 (2.45 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>304</td>
<td>311</td>
<td>8 (2.63 %)</td>
<td>1 (0.33 %)</td>
<td>9 (2.96 %)</td>
</tr>
<tr>
<td>400 μM</td>
<td>Image 1</td>
<td>306</td>
<td>316</td>
<td>10 (3.27 %)</td>
<td>0 (0.00 %)</td>
<td>10 (3.27 %)</td>
</tr>
<tr>
<td></td>
<td>Image 2</td>
<td>335</td>
<td>339</td>
<td>9 (2.69 %)</td>
<td>5 (1.49 %)</td>
<td>14 (4.18 %)</td>
</tr>
<tr>
<td></td>
<td>Image 3</td>
<td>310</td>
<td>314</td>
<td>5 (1.61 %)</td>
<td>1 (0.32 %)</td>
<td>6 (1.94 %)</td>
</tr>
<tr>
<td></td>
<td>Image 4</td>
<td>317</td>
<td>318</td>
<td>5 (1.58 %)</td>
<td>4 (1.26 %)</td>
<td>9 (2.84 %)</td>
</tr>
<tr>
<td>Average±Stdev</td>
<td></td>
<td>281.23±22.50</td>
<td>283.55±24.75</td>
<td>6.03±2.36</td>
<td>3.70±2.10</td>
<td>9.73±1.84</td>
</tr>
</tbody>
</table>

* O.Seg and U.Seg mean over-segmented nuclei and under-segmented nuclei respectively.