Supporting Information: Text S1

1 Derivation of the Learning Equation

Given the general RSTDP model (Equations (14) and (15) of the main text), a description of how the reward signal depends on the network activity (Equation (11) of the main text), and the details of the neuron models, we derived the specific learning equations that govern how a network evolves in time. We considered only the case where both the firing rates and the correlations between neurons are quasi-stationary (change very slowly over time) and are negligible for large time lags (of the order of the reward delay, d_r). Different definitions for the learning window, and correlations and covariances were used by Legenstein et al. and Gilson et al. [1,2]; the time lags of the functions are reversed. We used the definitions from the latter.

We first considered the learning due to an arbitrary reward signal with fixed mean. This is given by

$$\dot{K}_{ik} = \eta \left\{ \int_0^\infty g_c(s) \left[p_+ f_+(K_{ik}) Y_{ik}^W(t, s) + p_- f_-(K_{ik}) Y_{ik}^W(t, s) \right] ds
ight. + (p_+ \hat{y} + q_+) f_+(K_{ik}) D_{ik}^{W+}(t) + (p_- \hat{y} + q_-) f_-(K_{ik}) D_{ik}^{W-}(t) \right\},$$

where \hat{d} is the axonal delay from the inputs, $D_{ik}^\psi(t) = \int_{-\infty}^{\infty} \psi(u) D_{ik}(t, u - \hat{d}) du$, $D_{ik}(t, u)$ is the neuron-input cross-correlation (i.e., $D_{ik}(t, u) = F_{ik}(u) + \nu_i \nu_k$), $Y_{ik}^\psi(t, s) = \int_{-\infty}^{\infty} \psi(u) Y_{ik}(t, s, u - \hat{d}) du$, and $Y_{ik}(t, s, u)$ is given by

$$Y_{ik}(t, s, u) = \left\langle \bar{E}[\Delta y(t) S_i(t - s) \hat{S}_k(t - s + u)] \right\rangle_T,$$

where $\Delta y(t) = y(t) - \bar{y}$.

For the operant conditioning experiment, we substituted Equation (11) of the main text into Equation (2) to give

$$Y_{ik}(t, s, u) = \sum_j \gamma_j \int_0^\infty g_r(r) \bar{E}\left[S_j(t - d_r - r) S_i(t - s) \hat{S}_k(t - s + u) \right] dr.$$

Using the results of Bornstinet and Goldberger [3], we found that

$$\mathbb{E}[S_j(t_1) S_i(t_2) \hat{S}_k(t_3)] = \mathbb{E}[S_j(t_1)] \mathbb{E}[S_i(t_2)] \mathbb{E}[\hat{S}_k(t_3)] + \mathbb{E}[S_j(t_1)] \mathbb{C}[S_i(t_2), \hat{S}_k(t_3)]$$
$$+ \mathbb{E}[S_i(t_2)] \mathbb{C}[S_j(t_1), \hat{S}_k(t_3)] + \mathbb{E}[\hat{S}_k(t_3)] \mathbb{C}[S_j(t_1), S_i(t_2)]$$
$$+ \mathbb{C}[S_j(t_1), S_i(t_2), \hat{S}_k(t_3)],$$

where $\mathbb{C}[A, B]$ is the joint cumulant of random variables A and B (the covariance), and $\mathbb{C}[A, B, C]$ is the joint cumulant of random variables A, B, and C.

We have assumed that only pairwise correlations exist (i.e. for $i \neq j$, $\mathbb{C}[S_j(t_1), S_i(t_2), \hat{S}_k(t_3)] = 0$). However, when $i = j$, we found that

$$\mathbb{C}[S_i(t_1), S_i(t_2), \hat{S}_k(t_3)] = \nu_i^{-1} \mathbb{C}_{iii}(t_2 - t_1) F_{ik}(t_3 - t_1).$$
Therefore, using the covariances given in Equation (20) of the main text, we derived that

\[
E[S_i(t_1)S_i(t_2)\tilde{S}_k(t_3)] = \nu_i \nu_i \hat{\nu} + \nu_i \hat{F}_{ik}(t_3 - t_2) + \nu_i \hat{F}_{ik}(t_3 - t_1) \\
+ \nu_i \nu_i \hat{\nu} + c_i \nu_i \nu_i \epsilon(t_2 - t_3 + \hat{d}) + c_i \nu_i \nu_i \epsilon(t_1 - t_3 + \hat{d}) \\
+ a \nu_i \nu_i \delta(t_2 - t_1) + a c_i \nu_i \delta(t_2 - t_1) \epsilon(t_1 - t_3 + \hat{d}),
\]

and

\[
E[S_j(t_1)S_i(t_2)\tilde{S}_k(t_3)] = \nu_j \nu_i \hat{\nu} + \nu_j \hat{F}_{ik}(t_3 - t_2) + \nu_j \hat{F}_{ik}(t_3 - t_1) + \nu \hat{C}_{ij}(t_2 - t_1) \\
= \nu_j \nu_i \hat{\nu} + c_i \nu_j \nu_i \epsilon(t_2 - t_3 + \hat{d}).
\]

Substituting Equations (6) and (7) into Equation (3), we derived an expression for \(Y_{ik}(t, s, u)\) as

\[
Y_{ik}(t, s, u) = \gamma_i \nu_i \{ a g_r(s - d_r) [\hat{\nu} + c_i \epsilon(-u + \hat{d})] + c_i \nu_i g_r(s - d_r - u + \hat{d})\},
\]

where \(\epsilon(t)\) is the excitatory post-synaptic potential (EPSP) and \(c_i\) is the mean correlation strength between neuron \(i\) and its inputs. This also includes a correction factor, \(a = \int_{-\mathcal{U}}^{\mathcal{U}} \hat{C}_{ii}(t, u) du\), where \(\hat{C}_{ii}(t, u)\) is the mean auto-covariance function of neuron \(i\) at time \(t\), and \(\mathcal{U}\) is a period of time longer than the time scale of the learning window but shorter than the time scale of the reward and eligibility kernels. For Poisson neurons with constant inputs, the auto-covariance is a simple delta-function and so \(a = 1\). However, for LIF neurons, this is not necessarily the case.

We substituted Equation (8) into Equation (1) and obtained the rates of change of the mean weights into the reinforced, surround, and control neurons as, respectively,

\[
\dot{\tilde{K}}_R = \eta \tilde{\nu}_R \left\{ [p_+(\tilde{y} + a \gamma_{\eta_r}) + q_+] f_+(!\tilde{K}_R) [\tilde{W}_+ \hat{\nu} + \tilde{c}_R \theta] + [p_-(\tilde{y} + a \gamma_{\eta_r}) + q_-] f_-(!\tilde{K}_R) \tilde{W}_- \hat{\nu} \right. \\
+ \left. \gamma_{\eta_r} \tilde{\nu}_R \tilde{c}_R [p_+ f_+(!\tilde{K}_R) \tilde{W}_+ + p_- f_-(!\tilde{K}_R) \tilde{W}_-] \right\},
\]

\[
\dot{\tilde{K}}_S = \eta \tilde{\nu}_S \left\{ [p_+ \tilde{y} + q_+] f_+(!\tilde{K}_S) [\tilde{W}_+ \hat{\nu} + \tilde{c}_S \theta] + [p_- \tilde{y} + q_-] f_-(!\tilde{K}_S) \tilde{W}_- \hat{\nu} \right\},
\]

\[
\dot{\tilde{K}}_C = \eta \tilde{\nu}_C \left\{ [p_+ y_0 + q_+] f_+(!\tilde{K}_C) [\tilde{W}_+ \hat{\nu} + \tilde{c}_C \theta] + [p_- y_0 + q_-] f_-(!\tilde{K}_C) \tilde{W}_- \hat{\nu} \right\},
\]

where \(\tilde{y}\) is the mean firing rate of the reward signal, \(\tilde{W}_+\) and \(\tilde{W}_-\) are the integrals over the LTP and LTD parts of the learning window, respectively, \(\gamma_{\eta_r} = \int_0^{\infty} g_r(s) \eta_r(s - d_r) ds\), \(\theta = (W_+ * \epsilon)(0)\), and \(\tilde{\nu}_R\) and \(\tilde{c}_R\), \(\tilde{\nu}_S\) and \(\tilde{c}_S\), and \(\tilde{\nu}_C\) and \(\tilde{c}_C\) are the mean firing rates and mean spike triggered correlations of the reinforced, surround, and control neurons, respectively. For the specific functions and kernels used in this study, \(\eta_r = 0.76\) and \(\theta = 0.76\). For the small covariances due to the spike triggering effect, the third term for the evolution of \(\tilde{K}_R\) in Equation (9) can be neglected and this gives Equation (1) of the main text.
2 Resulting Mean Input Weights

Using logLTD weight dependence (Equation (18) of the main text) and uncorrelated input spike trains, the equations describing the stable equilibria of the mean synaptic weights into the reinforced, surround, and control neurons, \bar{K}_R, \bar{K}_S, and \bar{K}_C, respectively, are

\[
\frac{\log(1 + \alpha K_0^R)}{\log(1 + \alpha)} = \frac{\gamma \eta \bar{\nu} \bar{c}_R p_+ \hat{W}_+ + [p_+ (\bar{y} + a \gamma \eta_r) + q_+] [\hat{W}_+ \bar{\nu} + \bar{c}_R \theta_0]}{\gamma \eta \bar{\nu} \bar{c}_R p_- \hat{W}_- + [p_- (\bar{y} + a \gamma \eta_r) + q_-] W_- \bar{\nu}},
\]

\[
\frac{\log(1 + \alpha K_0^S)}{\log(1 + \alpha)} = \left[\frac{p_+ \bar{y} + q_+}{p_- \bar{y} + q_-} \right] \left[\hat{W}_+ \bar{\nu} + \bar{c}_S \theta_0 \right],
\]

\[
\frac{\log(1 + \alpha K_0^C)}{\log(1 + \alpha)} = \left[\frac{p_+ y_0 + q_+}{p_- y_0 + q_-} \right] \left[\hat{W}_+ \bar{\nu} + \bar{c}_C \theta_0 \right],
\]

where K_0 and α are the parameters of the weight dependence function.

Using additive weight dependence (Equation (19) of the main text) with rate-based learning terms, we have the equilibria

\[
\frac{\delta \nu^R}{\nu} = \frac{-\omega_{\text{in}}}{\left[p_+ (\bar{y} + a \gamma \eta_r) + q_+ \right] [\hat{W}_+ \bar{\nu} + \bar{c}_R \theta_0] + [p_- (\bar{y} + a \gamma \eta_r) + q_-] \bar{\nu} W_- + \omega_{\text{out}}},
\]

\[
\frac{\delta \nu^S}{\nu} = \frac{-\omega_{\text{in}}}{\left[p_+ \bar{y} + q_+ \right] [\hat{W}_+ \bar{\nu} + \bar{c}_S \theta_0] + \left[p_- \bar{y} + q_- \right] \bar{\nu} W_- + \omega_{\text{out}}},
\]

\[
\frac{\delta \nu^C}{\nu} = \frac{-\omega_{\text{in}}}{\left[p_+ y_0 + q_+ \right] [\hat{W}_+ \bar{\nu} + \bar{c}_C \theta_0] + \left[p_- y_0 + q_- \right] \bar{\nu} W_- + \omega_{\text{out}}},
\]

where the rate-based learning terms, ω_{in} and ω_{out}, give the changes to the synaptic strength for pre- and post-synaptic spikes, respectively.

References

