Appendix S1

The track ranges from -2.9 meters to 2.9 meters, so the minimum and maximum are selected as -2.4 and 2.4. The two actions are $-10N$ and $10N$. In this work, a force will be applied and the state will be updated every 0.02 seconds.

Given x, \dot{x}, θ, $\dot{\theta}$ and the force applied, the new state is determined using the following model. If $\dot{\theta} = \omega$, the following equation (1) can be used to determine the angular acceleration, where F is the force, g is the gravitational constant ($9.8m/sec^2$):

$$\dot{\omega} = \frac{m_c g \sin(\theta) - \cos(\theta)[F + m_p l \dot{\theta}^2 \sin(\theta)]}{(4/3)m_c l - m_p l \cos(\theta)^2}$$

(1)

Then, if $\dot{x} = v$, the acceleration of the cart can be determined with the following equation (2):

$$\dot{v} = \frac{F + m_p l [\dot{\theta}^2 \sin(\theta) - \dot{\omega} \cos(\theta)]}{m_c}$$

(2)

The dynamic behavior of the cart and pole system is approximated using Euler’s first-order numerical integration rule. Using this rule, the new cart position can be approximated using the following equation, where $\tau = 0.02$:

$$x(t + \tau) = x(t) + \tau \dot{x}(t)$$

(3)

In the same manner, the new angle of the pole can be determined with the following equation:

$$\theta(t + \tau) = \theta(t) + \tau \dot{\theta}(t)$$

(4)

Then, the new velocity of the cart, $v = \dot{x}$, can be determined with the following equation:

$$\dot{x}(t + \tau) = v(t + \tau) = v(t) + \tau \dot{v}(t)$$

(5)

The new angular velocity of the cart, $\omega = \dot{\theta}$, can be determined with the following equation:

$$\dot{\theta}(t + \tau) = \omega(t + \tau) = \omega(t) + \tau \dot{\omega}(t)$$

(6)

The networks fails under two conditions: (1) the cart hits the end of the track ($x >= 2.4$ m or $x <= -2.4$ m) or (2) the pole falls ($\theta >= 0.209$ radians or $\theta <= -0.209$ radians).

References