Text S1 Conditional-maximization steps of ECM algorithm

Take the expectation of $l_{c,1}(\Psi)$ with respect to Z, then we have the following Q function,

\[
Q_1(\Psi, \hat{\Psi}^{(t)}) = E_Z[l_{c,1}(\Psi)] = \sum_{j=1}^{n} \sum_{r=1}^{m} \sum_{r < s} E[I(Z_j = h_r h_s)|G_j, \hat{\Psi}^{(t)}] \ln [a \theta_r^2 I(r = s) + 2b \theta_r \theta_s I(r < s)] - n \ln T
\]

\[
= R - S
\]

There are $(m + 1)$ parameters to estimate (the parameter K and m haplotype frequencies) in the Q function and only one parameter is estimated in each CM-step. Further, note that when we maximize the Q function, there is a constraint condition that the sum of all the haplotype frequencies is equal to 1. So, there are m CM-steps in maximizing the Q function. Here, suppose that θ_1 is calculated by others. Let $\theta_x (x = 2, 3, \ldots, m)$ denote the haplotype frequency which will be estimated in the xth CM-step. As such, θ_1 can be estimated by $\hat{\theta}_1 = 1 - \hat{\theta}_2 - \ldots - \hat{\theta}_x - \ldots - \hat{\theta}_m = 1 - \hat{\theta}_x - A_1$. Then

\[
T = a \sum_{r=1}^{m} \theta_r^2 + 2b \sum_{r=1}^{m} \sum_{r < s} \theta_r \theta_s
\]

\[
= 2(a - b) \theta_x^2 - 2(a - b)(1 - A_1) \theta_x + \left[2(a - b) \sum_{r=2, r \neq x}^{m} \theta_r^2 + 2(a - b) \sum_{r=2, r \neq x}^{m} \sum_{s \neq x, r < s} \theta_r \theta_s - 2(a - b)A_1 + a \right]
\]

To estimate the haplotype frequencies, take the first-order derivation of Q_1 with respect to θ_x and we can get the following equations,

\[
\frac{\partial Q_1}{\partial \theta_x} = \frac{\partial R}{\partial \theta_x} - \frac{\partial S}{\partial \theta_x} = 0
\]

\[
\frac{\partial R}{\partial \theta_x} = \sum_{j=1}^{n} \sum_{r=1}^{m} \frac{2 I(r = x)}{\theta_x} P(Z_j = h_r h_x|G_j, \hat{\Psi}^{(t)}) - \sum_{j=1}^{n} \sum_{r=1}^{m} \frac{2 I(r = 1)}{\theta_x} P(Z_j = h_1 h_x|G_j, \hat{\Psi}^{(t)})
\]

\[
\frac{\partial S}{\partial \theta_x} = \frac{n}{T} [4(a - b) \theta_x - 2(a - b)(1 - A_1)]
\]

Using the equations above, Equation (7) can be obtained.