Supplementary Figure S3. ERG rearrangement results in ERG overexpression.

A) ERG fluorescence in situ hybridization using a break-apart assay. In ERG rearrangement-positive prostate cancer cells, the signal of the two fluorescent labeled probes breaks apart. In cells with ERG rearrangement (ERG+) the separation of red and green signals from one fusion indicates that the ERG gene has split apart. The remaining single fusion signal represents the normal (non-rearranged ERG) gene on the normal chromosome.

B) ERG protein visualization using immunohistochemistry. ERG protein is over-expressed in ERG rearrangement-positive prostate cancer tissues.

C) ERG protein quantification using the HistoQuest immunohistochemistry quantification program. Statistics, Mann Whitney U-test; *P<0.05; **P<0.01; ***P<0.001.