Documented Source Code

In this section we will discuss the source code of the GPU-based fast and scalable kNN (FSkNN) method. We performed our computational tests on the following hardware setup. Four NVIDIA Tesla C2050 GPU cards installed on a Xenon Nitro T5 Super-micro server that has Dual Xeon 5620 2.4GHz processors, 32GB of 1066 MHz DDR3 RAM and 800GB of Local Hard Disk. The programs were written in C++ and CUDA and compiled using the g++ 4.4.4 and nvcc compiler on a Linux OS, Kernel version 2.6.9.

Source code compilation. The code can be compiled using NVIDIA CUDA compiler driver nvcc release 3.0 and up. It will require OpenMP support (“-fopenmp -lgomp”) to handle multiple GPUs and Boost library to parse the input files.
Algorithm: GPU-FSkNN

Algorithm 1: Fast and Scalable kNN Algorithm (FSkNN)

Input: In, input matrix or a portion of the input matrix; $n_{\text{chunksize}}$, dimension of the sub-matrix (chunk); k, number of nearest neighbors;

Output: The kNN graph stored in Gk;

1. create Gk;
2. $Gk[i].weight \leftarrow \text{float}_\text{max}, \text{for } i \leftarrow 0...(n_{\text{row}} - 1);$
3. initialize $(\text{segments}, n_{\text{GPU}})$;
4. foreach $\text{segment} \in \text{segments}$ do
5.
6. create D;
7. create Gk';
8. host \rightarrow device (In, D, Gk');
9. initialize $(\text{splits}, \text{segment})$;
10. create Maxk;
11. foreach $\text{split} \in \text{splits}$ do
12.
13. initialize Maxk;
14. host \rightarrow device (Maxk);
15. initialize $(\text{chunks}, \text{split})$;
16. foreach $\text{chunk} \in \text{chunks}$ do
17.
18. Call $\text{Distance Kernel} \ll< \text{grid1, block1} \gg>(\text{In}, n_{\text{chunksize}}, \text{split}, \text{chunk}, b)$;
19. Call $\text{kNN Kernel} \ll< \text{grid2, block2} \gg>(D, n_{\text{chunksize}}, \text{Maxk})$;
20. device \rightarrow host (Gk');
21.
22. return Gk;

The algorithm starts with an input matrix In and produces a kNN graph (Gk). First, the weight attribute of each edge in the kNN graph is set to the maximum value of float (float_max) and the number of available GPUs (n_{GPU}) is assigned as the maximum number of segments (segments). The computational tasks for each of these segments are handled by separate GPUs. During the execution of each segment, the algorithm creates an array D (for holding a chunk of the matrix) and an additional pointer array Gk' linked to Gk (for holding the partial kNN graph of the respective segment) and transfers them to the device memory. Now to compute the partial kNN graph, the algorithm executes all the splits in each segment and subsequently all the chunks in each split. For each chunk the algorithm invokes the Distance kernel to compute a sub-matrix/chunk (D) and the kNN Kernel to compute an intermediate kNNs list. This list eventually becomes a partial kNN graph (stored in Gk') when all the chunks in a split and all the splits in a segment are executed completely. Then, the Gk' is transferred to host and mapped to the respective location in Gk.
Implementation: \texttt{fsknn()} function

```c
/* fsknn function to represent the fsknn algorithm. */
/* Input parameters: */
/* @param filenameOut : Output File name */
/* @param Ina : Input matrix (nRow x nCol) */
/* @param nRow : Total number of rows in the input matrix */
/* @param nCol : Total number of columns in the input matrix */
/* @param chunkSize : Total number of rows/columns in a chunk */
/* @param k : The integer value of k. */
/* Output: */
/* Graph(kNN) will be written in (filenameOut).knn file in */
/* the following format: */
/* * number of vertices, number of edges */
/* * source, target, weight */
/* * ..,... */
/* * source, target, weight */
/* */
int fsknn(char *filenameOut, float*Ina, int nRow, int nCol, int chunkSize, int k)
{
    /* define thread and blocks for Distance Kernel */
    dim3 blocksD (chunkSize/b,chunkSize/b);
    dim3 threadsD (b,b);
    /* define thread and blocks for kNN Kernel */
    int threadsK = 512; /* maximum number of threads allowed */
    int blocksK = chunkSize / threadsK+1;
    /* Declare local variables */
    float3 *Gka;
    int nRowExtended;
    int nColExtended;
    int nExtraCol;
    int nExtraRow;
    int splitSize;
    int segmentSize;
    /* Extend the columns */
    nColExtended = nCol;
    while (nColExtended % b !=0) {
        nColExtended++;
    }
    nExtraCol = nColExtended - nCol;
    /* Extend the rows */
```

nRowExtended = nRow;

while (nRowExtended % chunkSize != 0){
 nRowExtended++;
}

nExtraRow = nRowExtended - nRow;

/* Identify total number of chunks in a split */
splitSize = nRowExtended / chunkSize;

/* Allocate memory to store the kNN graph*/
Gka = (float3) malloc (sizeof(float3) * nRowExtended * k);

for (int i = 0; i < nRowExtended * k; i++)
 Gka[i].z = MaxValue; //initialize weights

/* Setup multi-GPUs */
int nGpu = 0;
cudaGetDeviceCount(&nGpu); //get the number of GPUs

if(nGpu < 1){
 printf("no CUDA capable devices were detected!\n");
 return 0;
}

if(nGpu > splitSize) nGpu = splitSize; // for small matrices

/* Identify total number of splits in a segment */
segmentSize = splitSize / nGpu;

/* show some statistics on host and device */
printf("number of host CPUs:	%d\n", omp_get_num_procs());
printf("number of CUDA devices:	%d\n", nGpu);

for(int i = 0; i < nGpu; i++)
{
 cudaDeviceProp dprop;
cudaGetDeviceProperties(&dprop, i);
 printf(" %d: %s\n", i, dprop.name);
}

printf("---------------------------\n");

printf("#chunks in each split (splitSize): %d\n",splitSize);
printf("#splits in each segment (segmentSize):%d\n",segmentSize);

printf("---------------------------\n");
/* Implementation of the FSkNN algorithm */

/* Set the number of threads = the number of available GPUs */
omp_set_num_threads(nGpu);

/* outer loop, in parallel for each segment (GPU) */
#pragma omp parallel
{
 /* Host variables */
 float *Da;
 int *Maxka;
 float3 *Gka_sub; // a pointer to the partial kNN graph
 unsigned int Gka_sub_bytes;

 /* Device variables */
 float *dev_Ina, *dev_Da;
 int *dev_maxArray;

 int tid = omp_get_thread_num();
 int numthread = omp_get_num_threads();
 int gpuid = -1;

 /* Set GPU by the thread id */
 cudaSetDevice(tid);
 cudaGetDevice(&gpuid);

 /* Allocate memory on host */
 Da = (float*) malloc(sizeof(float)*chunkSize*chunkSize);
 Maxka = (int*)malloc(sizeof(int)*chunkSize);

 /* Allocate memory on device */
 cudaMalloc((void **) &dev_Ina,nRow*nCol*sizeof(float));
 cudaMalloc((void **) &dev_Da,
 chunkSize*chunkSize*sizeof(float));
 cudaMalloc((void **) &dev_maxArray,
 chunkSize*sizeof(int));

 /* Copy Ina[] and Da[] to device */
 cudaMemcpy(dev_Ina, Ina, nRow*nCol*sizeof(float),
 cudaMemcpyHostToDevice);
 cudaMemcpy(dev_Da, Da,chunkSize*chunkSize*sizeof(float),
 cudaMemcpyHostToDevice);

 int splitBegin = tid * segmentSize;
 int splitEnd= splitBegin + segmentSize;
/*For last split*/
if ((splitSize - 1) - splitEnd <= segmentSize)
 splitEnd = splitSize;
Gka_sub = Gka + (tid*chunkSize*k)*(splitSize/numthread);

/* Calculate bytes used by the partial kNN graph */
Gka_sub_bytes = ((tid+1)*chunkSize * k
 * (splitEnd-splitBegin))
 - (tid*chunkSize * k
 * (splitEnd - splitBegin)))
 * sizeof(float3);
float3 * dev_Gka_sub = 0;
cudaMalloc((void **) &dev_Gka_sub,Gka_sub_bytes);
cudaMemset (dev_Gka_sub,0,Gka_sub_bytes);
cudaMemcpy (dev_Gka_sub,Gka_sub,Gka_sub_bytes,
cudaMemcpyHostToDevice);

/* Loop over all the splits in a segment*/
for (int split = splitBegin; split < splitEnd ; split++){
 /* Copy Maxka[] to the device */
 for (int r=0;r<chunkSize;r++)
 *(Maxka + r) = (split - tid * segmentSize)
 * k * chunkSize + r * k;
cudaMemcpy (dev_maxArray, Maxka,
 chunkSize * sizeof(int),
cudaMemcpyHostToDevice);

 /* Loop over all the chunks in a split*/
 for (int chunk = 0; chunk < splitSize; chunk ++){
 // Call Distance Kernel
 PearsonDistanceKernel <<<blocksD,threadsD>>>(
 dev_Ina, dev_Da, chunkSize, split, chunk,
 nRow,nCol,nExtraCol, nColExtended);

 // Call kNN Kernel
 kNNKernel <<< blocksK, threadsK >>>(
 dev_Da, dev_Gka_sub, dev_maxArray,
 chunkSize, nExtraRow, split, chunk, splitSize,
 nRow, tid,segmentSize, k);
 }
/*Copy back the partial kNN graph for a split*/
cudaMemcpy(Gka_sub, dev_Gka_sub,
 Gka_sub_bytes,cudaMemcpyDeviceToHost);
/* Deallocate device memory */
cudaFree(dev_Ina);
cudaFree(dev_Da);
cudaFree(dev_maxArray);
cudaFree(dev_Gka_sub);
} // Close OpenMP loop

/* Write down the kNN graph into an external file (filename.knn) */
FILE * pFile;
pFile = fopen(filenameOut,"w");
if (pFile!=NULL) {
 fprintf(pFile,"%d %d\n",nRow, nRow * k);
 for (int i = 0; i < nRow*k; i++)
 // source, target and weight
 fprintf(pFile,"%d %d %f\n", int(Gka[i].x),
 int(Gka[i].y),
 Gka[i].z);
 fclose (pFile);
}
return 0;
Distance Kernel Algorithm

Algorithm 2: Distance Kernel Algorithm

Input:
- In, input matrix or a portion of the input matrix;
- nchunksize, dimension of the distance matrix chunk;
- split, index of split;
- chunk, index of chunk;
- b, data block size;

Output:
- none, a chunk of the original distance matrix stored in D;

1. create two shared memory arrays, X and Y to load data blocks of size $(b \times b)$ from In;
2. /* Identify the thread and block indices */
3. $bx \leftarrow blockIdx.x, by \leftarrow blockIdx.y$;
4. $tx \leftarrow threadIdx.x, ty \leftarrow threadIdx.y$;
5. /* Identify the data blocks to process */
6. $Xbegin \leftarrow (bx + nchunksize/b \times chunk) \times b \times nCol$;
7. $Ybegin \leftarrow (by + nchunksize/b \times split) \times b \times nCol$;
8. $Yend \leftarrow Yend + ncol - 1$;
9. $d \leftarrow 0$;
10. for $y \leftarrow Ybegin$ by $b, x \leftarrow Xbegin$ to $Yend$ do
11. $Y[ty][tx] \leftarrow In[y + ty \times nCol + tx]$;
12. $X[tx][ty] \leftarrow In[x + ty \times nCol + tx]$;
13. synchronize_threads();
14. foreach column $i \in nCol$ to b do
15. if $(n'Col - nCol) \neq 0$ and $y \geq (Ybegin + nCol - b)$ and $i \geq (nCol - n'Col + b)$ then
16. continue /* exclude extra (pad) columns */;
17. $d \leftarrow d + distance \,(or\,similarity)\,\,between\,\,data\,\,in\,\,Y[ty][i]$ \,and\, $X[i][tx]$;
18. synchronize_threads();
19. /* Identify location of the computed distance in the chunk */
20. $index \leftarrow bx \times by \times nchunksize + ty \times b + bx \times b + tx$;
21. $D[index] \leftarrow d$;

Computation of the Distance Kernel. The Distance kernel is presented as a template function which be adapted for several types distance measures, such as Euclidean or Manhattan distance or similarity measures that are based on Pearson’s or Spearman’s correlation. Here, each thread is responsible for computing a single distance in the matrix. The threads are organized in a 2-dimensional CUDA thread and block structure. Although the basic algorithm and the thread organization have been adapted from Chang et al. [1, 2], we modified it to compute a chunk of the distance matrix instead of the
complete distance matrix. The working procedure of the algorithm is simple, during each iteration, every thread block loads \((b \times b)\) sized data blocks from the input matrix \(In\) to single dimensional shared memory arrays \(X\) and \(Y\). Then after synchronization and each thread starts to calculate and accumulate own partial distances in \(d\). When the distance values are finalized, each thread stores \(d\) to the appropriate location in \(D\). It should be noted here that the algorithms in \([1, 2]\) were designed to work only with the data sets where the number of rows and columns are multiples of 16 only (i.e., the data block size, \(b=16\)). This limitation was imposed so that all threads in any half-warp (a \(warp = 32\) threads) can access the data in a sequence. We modified the original algorithm by introducing padded input matrix rows and columns so that the algorithm can work with any number of rows and columns.

Implementation: Distance Kernel

```c
/* Distance kernel (Implements Pearsons Correlation).
   * This code has adapted from the paper "Compute pairwise Manhattan
   * distance and Pearson correlation coefficient of data points with
   * GPU" by Chang et al. (2009) but instead of computing the whole
   * distance matrix, we compute a chunk of size (chunkSize x chunkSize)
   * of the complete matrix.

   * Input Parameters:
   * @param Ina : Input matrix (nRow x nCol)
   * @param Da : Distance matrix chunk (chunkSize x chunkSize)
   * @param chunkSize : Total number of rows in a chunk
   * (must be multiple of b)
   * @param split : split ID
   * @param chunk : chunk ID
   * @param nExtraCol : No. of extra columns added afterwards
   * @param nColExtended : Total number of columns in the
   * extended input matrix
   * Output:
   * none, Da[] left on the device memory
   */

// Computes Pearsons Correlation
__global__ void PearsonDistanceKernel(float *Ina, float *Da,
   int chunkSize, int split, int chunk, int nRow,
   int nCol, int nExtraCol, int nColExtended)
{
   __shared__ float Xs[b][b];
   __shared__ float Ys[b][b];
```

9
int bx = blockIdx.x, by = blockIdx.y;
int tx = threadIdx.x, ty = threadIdx.y;

/* Adapted from Chang et al. (2009) */
int xBegin = (bx + (chunkSize/b) * chunk) * b * nCol;
int yBegin = (by + (chunkSize/b) * split) * b * nCol;
int yEnd = yBegin + nCol - 1;
int x, y, i, index;
float a1, a2, a3, a4, a5;
float avgX, avgY, varX, varY, cov, rho;
a1 = a2 = a3 = a4 = a5 = 0.0;
for(y=yBegin,x=xBegin;y<=yEnd;y+=b,x+=b){
 /* load partial data into shared memory */
 Ys[ty][tx] = Ina[y + ty*nCol + tx];
 Xs[tx][ty] = Ina[x + ty*nCol + tx];
 __syncthreads();

 /* Calculate and accumulate partial similarity/distance */
 for(i = 0; i < b; i++){
 if (nExtraCol!=0 && (y>=(yBegin +(nColExtended-b)) && (i>= nCol-(nColExtended-b)))
 continue;
 a1 += Xs[i][tx];
 a2 += Ys[ty][i];
 a3 += Xs[i][tx] * Xs[i][tx];
 a4 += Ys[ty][i] * Ys[ty][i];
 a5 += Xs[i][tx] * Ys[ty][i];
 }
 __syncthreads();

 avgX = a1/nCol;
 avgY = a2/nCol;
 varX = (a3-avgX*avgX*nCol)/(nCol-1);
 varY = (a4-avgY*avgY*nCol)/(nCol-1);
 cov = (a5-avgX*avgY*nCol)/(nCol-1);
 rho = cov/sqrtf(varX*varY);

 /* Identify the location (index) of the computed distance in the chunk of distance matrix */
 index = by*b*chunkSize + ty*chunkSize + bx*b + tx;
 Da[index] = rho;
}

}
kNN Kernel Algorithm

Algorithm 3: kNN kernel Algorithm

Input:
- D, a chunk of the original distance matrix;
- \(n_{\text{chunksize}} \), dimension of the chunk;
- Maxk, an array to hold the farthest neighbors for each row index in the chunks;

Output: none, an (intermediate) kNN graph stored in \(G_k' \);

1. \(\text{row} ' = \text{blockIdx.x} \times \text{blockDim.x} + \text{threadIdx.x} \);

2. if \(\text{row} ' < n_{\text{chunksize}} \) then

 3. initialize row /* absolute index in the original distance matrix */;

 4. for column' ← 1 to \(n_{\text{chunksize}} \) do

 5. initialize column /* absolute index in the original distance matrix */;

 6. if row ← column or row > \(n_{\text{row}} \) or column > \(n_{\text{col}} \) then continue /* exclude diagonal and pad regions */;

 7. if \(D[\text{row}' \times n_{\text{chunksize}} + \text{column}'] < G_k'[\text{Maxk}[\text{row}']].\text{weight} \) then

 8. \(G_k'[\text{Maxk}[\text{row}']].\text{source} \leftarrow \text{row} ; \)

 9. \(G_k'[\text{Maxk}[\text{row}']].\text{target} \leftarrow \text{column} ; \)

 10. \(G_k'[\text{Maxk}[\text{row}']].\text{weight} \leftarrow D[\text{row}' \times n_{\text{chunksize}} + \text{column}'] ; \)

 11. Search the new maximum element in \(\text{row}'(D) \) and store the index in \(\text{Maxk}[\text{row}'] \);

Computation of the kNNs from a distance matrix chunk: The kNN Kernel algorithm utilizes an 1-dimensional thread and block structure. Here, each thread works on a single row (chunk) and identifies the \(k \)-nearest neighbors for respective row index, where an array Maxk holds the location of the farthest \(k \)-neighbor. For each row index (chunk) the respective farthest \(k \)-neighbor is investigated and replaced if the distance to any element \([i], i = 1 \ldots n_{\text{chunks}} \) is found smaller. However, every index is not checked, rather based on the position of chunk in the original distance matrix the algorithm skips certain indices, for example, it excludes the diagonal indices (i.e., the distance from the point itself) for the chunks in diagonal positions and similarly it exclude the indices of the extra (pad) regions in the original distance matrix.
Implementation: \textit{kNN Kernel}

```c
/*
* Implements kNNKernel Algorithm
* Input Parameters:
* @param Da : Distance matrix chunk (chunkSize x chunkSize)
* @param Gka : An array of 3-tuples (source,target,weight) to store the kNN graph (Gka)
* @param Maxka : An array that contains the index of the farthest nearest neighbours of each node (in a chunk)
* @param chunkSize : Total number of rows in a chunk
* @param nRow : Total rows in the original distance matrix
* @param nExtraRow : Extra rows added to fit all the chunks
* @param split : split ID
* @param chunk : chunk ID
* @param splitSize : Total number of chunks in a split
* @param chunkSize : Total number of rows in a chunk
* @param tid : Openmp threadID (segment/gpu ID)
* @param k : Integer value of k
* Output:
* none, kNN graph (Gka) will be left on the device.
*/

__global__ void kNNKernel (float* Da, float3* Gka, int *Maxka,
int chunkSize, int nRow,
int split, int chunkSize,
int splitSize, int nRow,
int tid, int chunkSize, int k)
{
    /* Identify the row by thread id*/
    int row = blockIdx.x*blockDim.x + threadIdx.x;
    /* If the identified row belongs to the chunk*/
    if (row < chunkSize)
    {
        /* Set the search range */
        int beginSearch = (split - tid * splitSize) * chunkSize + row * k ;
        int endSearch = beginSearch + k;
        /*Search by Columns of the chunk*/
    }
}```
for(int column=0;column < chunkSize ; column++){
  /* For Chunks in the diagonal of the original matrix */
  if(split == chunk){
    if(row != column){ //skip distance from the point itself
      /* Exclude the diagonal and extra regions
      of the matrix*/
      if (( nExtraRow !=0 )
        && ((split >= splitSize - 1 )
          || (chunk >= splitSize - 1 ))
        && (row >= chunkSize - nExtraRow
          || column >= chunkSize-nExtraRow ))
        continue;

      if(( *(Gka + *(Maxka + row ))).z > *(Da + chunkSize * row + column )) {
        ( *(Gka + *(Maxka + row ))).z = *(Da + chunkSize * row + column );
        ( *(Gka + *(Maxka + row ))).x = split * chunkSize + row;
        ( *(Gka + *(Maxka + row ))).y = chunk * chunkSize + column;

        /* Search the index of the max element
        within range */
        for (int index = beginSearch;
          index < endSearch;
          index++){
          if(( *(Gka+index)).z > (*(Gka + *(Maxka + row))).z ) *(Maxka+row) = index;
        } // inner for loop
      } //if
  } // if row != column
  } // if split == chunk
  /* For chunks in non-diagonal positions of
  the original matrix */
else
{
    /* Exclude the extra regions of the matrix*/
    if ((nExtraRow != 0)
        && (column >= chunkSize - nExtraRow
            && chunk >= splitSize-1)
        || (nExtraRow != 0)
        && (row >= chunkSize - nExtraRow
            && split>=splitSize-1))
    
        continue;

    if(( *(Gka + *(Maxka + row))).z >
      *( Da + chunkSize * row + column )){

        *(Gka + *(Maxka + row))).z
        = *(Da + chunkSize * row + column);

        *(Gka + *(Maxka + row))).x
        = split * chunkSize + row;

        *(Gka + *(Maxka + row))).y
        = chunk * chunkSize + column;

        /* Search the index of the max element
         * within range */

        for (int index = beginSearch;
            index < endSearch;
            index ++){

            if((*(Gka+index)).z >
              (**(Gka + *(Maxka + row))).z)
              *(Maxka + row) = index;

        } // inner for loop

    } // if

} // (else condition) i.e., if split != chunk

} // for loop ends

} // if row < chunkSize

}
Data Structures

The input data set is represented in the form of a matrix, where each row represents a point and the respective columns represent the dimensions of the point. The complete input matrix contains \( n_{row} \) number of rows and \( n_{col} \) number of columns. Since, CUDA programming API does not support transferring of multidimensional arrays from host to device memory, we store the input matrix in a single dimensional array \( In \) of length \( (n_{row} \times n_{col}) \), the distance matrix chunks in a single dimensional array \( D \) of length \( (n_{chunksize} \times n_{chunksize}) \), given a fixed chunk size, \( n_{chunksize} \) and the resultant \( k \)NN graph \( (G_k) \) in an array of 3-tuples \( \{\text{source}, \text{target}, \text{weight}\} \) of length \( (k \times n_{row}) \). Additionally, we store the location of the farthest \( k \) nearest neighbours for each row index and chunk in an array \( \text{Maxk} \) to facilitate the \( k \)NN search.

```c
/* An array of 3-tuples \{source,target,weight\} to store the kNN graph \((G_k) \),
this can be replaced by a structure such as

typedef struct
{
 int source;
 int target;
 float weight;
} Edge;
Edge *Gka;
*/
float3 *Gka;
float3 *Gka_sub; // A pointer to Gka (for a segment)
float *Ina; // Holds the input matrix
float *Da; // Holds chunk of the original distance matrix
int k; // user defined value of k
int chunkSize; // user defined chunk size
int *Maxk; // An array to hold the farthest value of k
int nRow; //Total Number rows in the input matrix
int nCol; //Total Number columns in the input matrix
```
Program Execution

We show a sample demonstration, input and output of our program in this section.

Input file format

Filename: Microarrays_CIBM_format.txt

1 <MicroarrayData>
2 10 6
3 F_1 1 4.5 2 7.3 8.21 5.71
4 F_2 1 3 8 6.66 7.19 1.06
5 F_3 3 3 9 5 6.67 7.73
6 F_4 4 4 1 4 3.64 2.92
7 F_5 8 7 1.5 4 4.91 6.15
8 F_6 8 6 3 2.4 7.36 4.76
9 F_7 3 8 3 3.2 5.31 5.49
10 F_8 2 1 4.02 5.8 3.08 7.15
11 F_9 4 1 3.7 2.2 1.31 1.48
12 F_10 -3 0 3 1 3.82 2.7
13 <SamplesNames>
14 C1 C2 C3 C4 C5 C6
15 <SamplesClasses>
16 1 1 1 0 0 0
17 <EndOfFile>

Running the Program

1 @mendel:./gpufsknn Microarrays_CIBM_format.txt
2 3 File Name (input)= TestData.bio.csv
4 5 Calculation starts at time : 17:15:49
6 7 Features (nRow) = 10 Samples(nCol) = 6
7 8 Data file loaded successfully...!
8 9 Type = Microarray:
9 10 number of host CPUs: 16
11 12 number of CUDA devices: 1
13 14 0: Tesla C2050
14 15 ---------------------------
15 16 Total no of chunks in each split (splitSize): 1
16 17 Total no of splits in each segment (segmentSize): 1
17 18 CPU thread 0 (of 1) uses CUDA device 0
18 19 kNN computation finished at time : 17:15:55
19 20 Writing....output File Name = Microarrays_CIBM_format.txt.knn

16
Output file: Microarrays_CIBM_format.txt.knn

1 10 30
2 0 5 -0.145362
3 0 8 -0.782624
4 0 4 -0.117918
5 1 5 -0.480781
6 1 4 -0.866238
7 1 3 -0.415669
8 2 5 -0.486956
9 2 4 -0.763127
10 2 3 -0.833721
11 3 9 -0.520289
12 3 1 -0.415669
13 3 2 -0.833721
14 4 9 -0.673579
15 4 1 -0.866238
16 4 2 -0.763127
17 5 7 -0.620824
18 5 1 -0.480781
19 5 2 -0.486956
20 6 7 -0.317340
21 6 1 -0.292388
22 6 8 -0.834691
23 7 4 -0.367099
24 7 5 -0.620824
25 7 6 -0.317340
26 8 0 -0.782624
27 8 6 -0.834691
28 8 9 -0.426985
29 9 8 -0.426985
30 9 4 -0.673579
31 9 3 -0.520289

17
Conclusion

We developed a software tool based on our scalable approach for computing large-scale \(k\)NN graph using GPU and CUDA (FS-\(k\)NN-GPU). The source code is available under GNU Public License (GPL) at https://sourceforge.net/p/gpufsknn/

This is a hybrid approach where the host is responsible for loading, chunking and distributing the data and computation to the device, where the device uses two kernels to compute the distance and \(k\)NNs of each feature in the data set. The basic approach is simple and adaptable with other parallel frameworks.

Outcome of our proposed tool can be used to generate approximate minimum spanning trees (AMST), minimum spanning forests (MSFs) [4] or clusters from large-scale biological data sets, such as microarrays (See [3]). We believe this work can provide compelling benefits for several domains of bioinformatics data mining.

References


Figure 1: Results can be visualized using yEd (http://www.yworks.com) GML visualization tool. Visualization of the 3NN graph generated by the input file.

Figure 2: Visualization of the clustering created using the kNN graph and the MSTkNN+ algorithm in [3].