Appendix S5

Entropy involved in fidelity of DNA replication

J. Ricardo Arias-Gonzalez¹, ², ³, ∗

¹ Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
² Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
³ CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad de Nanobiotecnología”
∗ E-mail: ricardo.arias@imdea.org

Informational and Configurational terms of the Entropy in an ideal gas

The entropy per particle of a multicomponent ideal gas can be calculated by using the Sackur-Tetrode formula for a mixture of \(n \) particles of types \(x \in X = \{ A, C, G, T \} \) and masses \(m_x \) occupying a total volume \(V \) as follows:

\[
s \equiv \frac{S}{n} = \sum_{x \in X} \left\{ \frac{n_x}{n} k \ln \frac{V}{n_x} + \frac{3}{2} \frac{n_x}{n} k \left[\frac{5}{3} \ln \left(\frac{2\pi m_x kT}{\hbar^2} \right) \right] \right\} \\
= -k \sum_{x \in X} p_n(x) \ln p_n(x) - k \sum_{x \in X} p_n(x) \ln \left(\frac{n\hbar^3}{V(2\pi m_x kT)^{3/2}} \right) + \frac{5}{2} k \\
= s_I(n_x/n) + s_C(x, C) + s_0,
\]

(S5.1)

where \(p_n(x) = n_x/n \), as defined in the main text. \(s_0 = (5/2)k \) is a constant, \(s_I(n_x/n) = -k \sum_{x \in X} p_n(x) \times \ln p_n(x) \) is the herein labeled as informational entropy of the initial state and \(s_C(x, C) \) is the herein labeled as configurational entropy,

\[
s_C(x, C) = -k \sum_{x \in X} p_n(x) \ln \left(C\Lambda_l^3(x) \right),
\]

(S5.2)

which depends on the type of particle, \(x \), and the total concentration of particles, \(C = n/V \). \(\Lambda_l(x) \) is a generalized thermal wavelength for particles in a liquid, introduced here as:

\[
\Lambda_l(x) \equiv \frac{1}{n_l^T(x)} \frac{\hbar}{\sqrt{2\pi m_x kT}},
\]

(S5.3)

with \(n_l^T(x) \) a thermal refractive index of particles, \(x \), in a liquid, which becomes \(n_{vac}^T = 1 \) for particles in vacuum, since this is the case of the classical ideal gas. In this scheme, the thermal refractive index modifies the thermal wavelength of classical particles in a liquid as \(\Lambda_l = \Lambda/n_l^T \), and the dispersion relation as \(E = (n_l^T)^{-2}\omega^2/2m \).

For particles of similar mass, chemical composition and structure, as it is the case of nucleotides, we can assume that both \(\Lambda_l \) and \(n_l^T \) are the same for the four types of particles. In these conditions, the configurational entropy is only a function of the total concentration of nucleotides, \(s_C(C) = -k \ln \left(C\Lambda_l^3 \right) \). The molar concentration of nucleotides in a reservoir for single-molecule experiments and for in vivo replication is certainly of \(\sim 50 \mu M \). The mass of the deoxyribonucleotide monophosphates is \(m_x \simeq 330 \) Da. Then, the thermal wavelength is \(\Lambda \sim 10^{-12} \) m and the configurational entropy is \(s_C \simeq 26 \) k/nt, which is much larger than the informational entropy, \(s_I = 1.39 \) k/nt (see the main text).