SUPPLEMENT S2: RT-QPCR METHODS

Table S2.1 – Experimental design

Definition of experimental and control groups	Experimental: Madison (MSN) mouse strain. Control: outbred hsd:ICR (ICR) mouse strain.
Number in each group	8 MSN, 8 ICR. All mice were male.
Assay carried out by core or investigator’s laboratory	Carried out in investigator’s laboratory.
Authors’ contributions to qPCR section	C. Michael Saul: all molecular work, half of dissection work, writing. Griffin M. Gessay: half of dissection work. Stephen C. Gammie: bred mice, provided funding and lab space, writing.

Table S2.2 – Tissue Samples

Description	Fresh frozen whole hippocampus.
Volume or Mass of sample	See table S2.10.
Dissection Type	Gross dissection of hippocampal tissue from brain.
Processing Procedure	Animals were euthanized by cervical dislocation under isoflurane anesthetic, decapitated, and their hippocampi were immediately dissected from their brains.
If frozen, how quickly?	Samples frozen immediately on dry ice upon dissection.
Sample storage conditions	Stored at -80°C for no more than 12 weeks prior to RNA extraction.

Table S2.3 – Nucleic Acid Extraction

Procedure and/or instrumentation	Mortar and pestle disruption, guanidinium thiocyanate-phenol-chloroform extraction, and spin column cleanup and purification.
Name of kit and details of any modifications	Bio-Rad Aurum Total RNA Fatty and Fibrous Tissue Kit (catalog number 732-6830) used according to the manufacturer’s specifications.
Sources of additional reagents used	Chloroform (Acros Organics, catalog number AC42355-0250) Ethanol (Fisher Scientific, catalog number BP2818-500)
Details of DNase treatment	On-column treatment with DNase I according to manufacturer's specifications.
Contamination assessment of input RNA	NanoDrop curves used to assess presence of presence of protein, salt, and organic contaminants. All curves indicated clean samples.
Nucleic acid quantification	See table S2.10.
Instrument and method of nucleic acid quantification	NanoDrop spectrophotometer, absorbance at 260nm.
Purity (A$_{260}$/A$_{280}$)	See table S2.10.
Yield	See table S2.10.
RNA integrity instrument	Agilent RNA 6000 Nano Chips with Agilent BioAnalyzer 2100.
RIN	See table S2.10.
Inhibition testing	C$_q$ dilution, 1:8 using Ywhaz. As expected, diluted samples ran ~3 cycles behind undiluted samples.
Table S2.4 – Reverse Transcription

<table>
<thead>
<tr>
<th>Complete reaction conditions</th>
<th>500µM dNTP mix, 20mM Tris-HCl (pH 8.4), 50mM KCl, 5mM MgCl₂, 2.5mM dT 20mers, 10mM DTT, 2U/µL RNaseOUT, 10U/µL SuperScript III RT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of RNA and reaction volume</td>
<td>25µL reactions, 2µg total RNA used in each reaction. 1.25µL RNase H added after reaction termination.</td>
</tr>
<tr>
<td>Priming oligonucleotide and concentration</td>
<td>oligo-dT 20mers, final reaction concentration of 2.5mM.</td>
</tr>
<tr>
<td>Temperature and time</td>
<td>Prior to cDNA synthesis, RNA, primers, and dNTPs were denatured together at 65°C for 5 min. cDNA synthesis took place at 50°C for 50 min followed by an 85°C reaction termination step for 5 min. After reaction termination, the RNase reaction ran at 37°C for 20 min.</td>
</tr>
<tr>
<td>Manufacturer of reagents and catalog number</td>
<td>Invitrogen SuperScript III First-Strand Synthesis System for RT-PCR (catalog number 18080-051)</td>
</tr>
<tr>
<td>C_q with and without RT</td>
<td>See table S2.10 for no RT C_q.s. While some gDNA contamination is present, its effect on experiments are negligible and stochastic according to hypothesis testing on no RT controls. This contamination is mostly a source of random error.</td>
</tr>
<tr>
<td>Storage conditions of cDNA</td>
<td>Stored at -80°C for no longer than 6 months.</td>
</tr>
</tbody>
</table>

Table S2.5 – qPCR Target Information

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>See table S2.11.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accession number</td>
<td>See table S2.11.</td>
</tr>
<tr>
<td>Location of amplicon</td>
<td>See table S2.11.</td>
</tr>
<tr>
<td>Amplicon length</td>
<td>See table S2.11.</td>
</tr>
<tr>
<td>In silico specificity</td>
<td>All primers screened for specificity using NCBI Primer-BLAST.</td>
</tr>
<tr>
<td>Homologs amplified</td>
<td>No primers amplified pseudogenes or retropseudogenes.</td>
</tr>
<tr>
<td>Sequence alignment</td>
<td>Aligned in NCBI Primer-BLAST.</td>
</tr>
<tr>
<td>Location of each primer by exon or intron</td>
<td>See table S2.11.</td>
</tr>
<tr>
<td>Targeted splice variants</td>
<td>Each primer set targets all splice variants for every transcript of interest as they are documented in the NCBI RefSeq RNA database.</td>
</tr>
</tbody>
</table>

Table S2.6 – qPCR oligonucleotides

<table>
<thead>
<tr>
<th>Primer sequences</th>
<th>See table S2.11.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe sequences</td>
<td>Not applicable; dsDNA binding dye chemistry used.</td>
</tr>
<tr>
<td>Location and identity of any modifications</td>
<td>No modifications.</td>
</tr>
<tr>
<td>Manufacturer of oligonucleotides</td>
<td>UW-Madison Biotechnology Center DNA Synthesis Facility.</td>
</tr>
<tr>
<td>Purification method</td>
<td>Standard desalting and lyophilization.</td>
</tr>
</tbody>
</table>
Table S2.7 – qPCR protocol

<table>
<thead>
<tr>
<th>Complete reaction conditions</th>
<th>2X Bio-Rad SsoFast EvaGreen Super Mix without ROX (catalog number 172-5204) used with no modifications.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction volume and amount of cDNA/DNA</td>
<td>20µL reactions; 2µL 1:5 diluted cDNA used in each reaction.</td>
</tr>
<tr>
<td>Primer Concentration</td>
<td>500nM forward and 500nM reverse primer for all primer sets.</td>
</tr>
<tr>
<td>Mg(^{2+}) concentration</td>
<td>3.0mM MgCl(_2).</td>
</tr>
<tr>
<td>dNTP concentration</td>
<td>200µM each of dATP, dTTP, dCTP, and dGTP. 800µM dNTP total.</td>
</tr>
<tr>
<td>Polymerase identity</td>
<td>Bio-Rad SsoFast Taq Fusion Polymerase.</td>
</tr>
<tr>
<td>Polymerase concentration</td>
<td>Proprietary concentration.</td>
</tr>
<tr>
<td>Buffer identity and manufacturer</td>
<td>Bio-Rad qPCR buffer provided with SsoFast EvaGreen Supermix.</td>
</tr>
<tr>
<td>Exact buffer chemistry</td>
<td>Proprietary composition.</td>
</tr>
<tr>
<td>PCR additives used</td>
<td>No additives used.</td>
</tr>
<tr>
<td>Manufacturer of plates and catalog number</td>
<td>Applied Biosystems MicroAmp Fast 96-Well Reaction Plates (catalog number 4346907).</td>
</tr>
<tr>
<td>Complete thermal cycling parameters</td>
<td>Incubation stage: 30s at 95°C. Cycling stage: 40 cycles, 3 steps: 5s at 95°C, 20s at annealing temperature (see table S2.11 for the specific annealing temperature used with each primer set), and 20s at 72°C.</td>
</tr>
<tr>
<td>Reaction setup</td>
<td>Manual using Eppendorf single channel adjustable volume pipettes.</td>
</tr>
<tr>
<td>qPCR instrument</td>
<td>Applied Biosystems StepOnePlus.</td>
</tr>
</tbody>
</table>

Table S2.8 – qPCR validation

<table>
<thead>
<tr>
<th>Evidence of optimization</th>
<th>Prior to analysis, we ran each primer set at several annealing temperatures. We used the annealing temperature with the earliest C(_q) and the highest efficiency.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>Stringent in silico testing of primers prior to qPCR using Primer-BLAST, dissociation curve test of specificity in vitro.</td>
</tr>
<tr>
<td>C(_q) of NTC</td>
<td>C(_q) > 40 for all NTCs for all genes.</td>
</tr>
<tr>
<td>Calibration curves with slope and y-intercept (m, b)</td>
<td>See table S2.12.</td>
</tr>
<tr>
<td>Efficiency calculated from slope</td>
<td>See table S2.12.</td>
</tr>
<tr>
<td>r(^2) of calibration curve</td>
<td>See table S2.12.</td>
</tr>
<tr>
<td>Linear dynamic range (LDR)</td>
<td>See table S2.12.</td>
</tr>
<tr>
<td>C(_q) variation at Limit of Detection</td>
<td>LOD measurements not necessary for relative quantification.</td>
</tr>
<tr>
<td>Evidence for LOD</td>
<td>LOD measurements not necessary for relative quantification.</td>
</tr>
<tr>
<td>If multiplex, efficiency and LOD for each assay</td>
<td>Not applicable; dsDNA binding dye chemistry used.</td>
</tr>
</tbody>
</table>
Table S2.9 – Data analysis

<table>
<thead>
<tr>
<th>qPCR analysis program</th>
<th>Relative Expression Software Tool (REST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Cq determination</td>
<td>Used ABI StepOnePlus software to determine ABI’s Cq value.</td>
</tr>
<tr>
<td>Outlier identification and disposition</td>
<td>Our experiments contain no outliers.</td>
</tr>
<tr>
<td>Results from NTC</td>
<td>All NTCs have no amplification.</td>
</tr>
<tr>
<td>Justification of number and choice of reference genes</td>
<td>The combination of Sdha and Ywhaz was found to be the most stable combination of reference genes by Gubern et al. (2009).</td>
</tr>
<tr>
<td>Description of normalization</td>
<td>Data normalized for baseline fluorescence.</td>
</tr>
<tr>
<td>Number and stage (reverse transcription or qPCR) of technical replicates</td>
<td>3 qPCR technical replicates.</td>
</tr>
<tr>
<td>Statistical methods for results significance</td>
<td>Randomization test for significance.</td>
</tr>
<tr>
<td>Software (source, version) of stats</td>
<td>StepOnePlus 2.1; REST 2009.</td>
</tr>
</tbody>
</table>

Table S2.10 – Sample quality control

<table>
<thead>
<tr>
<th>ID</th>
<th>Strain</th>
<th>Tissue Mass</th>
<th>RNA Concentration</th>
<th>RNA Yield</th>
<th>Cq (RT/no RT)†</th>
<th>A260 : A280</th>
<th>RIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MSN</td>
<td>35.8 mg</td>
<td>222.34 ng/µL</td>
<td>35.574 µg</td>
<td>18.20/36.78</td>
<td>2.11</td>
<td>8.2</td>
</tr>
<tr>
<td>2</td>
<td>MSN</td>
<td>36.7 mg</td>
<td>248.83 ng/µL</td>
<td>39.813 µg</td>
<td>17.84/40.00</td>
<td>2.12</td>
<td>8.3</td>
</tr>
<tr>
<td>3</td>
<td>MSN</td>
<td>35.7 mg</td>
<td>271.41 ng/µL</td>
<td>43.426 µg</td>
<td>18.01/31.40</td>
<td>1.99</td>
<td>8.3</td>
</tr>
<tr>
<td>4</td>
<td>MSN</td>
<td>35.8 mg</td>
<td>235.50 ng/µL</td>
<td>37.680 µg</td>
<td>17.75/38.96</td>
<td>2.12</td>
<td>8.2</td>
</tr>
<tr>
<td>5</td>
<td>MSN</td>
<td>60.0 mg</td>
<td>454.53 ng/µL</td>
<td>72.725 µg</td>
<td>18.09/36.62</td>
<td>2.08</td>
<td>8.4</td>
</tr>
<tr>
<td>6</td>
<td>MSN</td>
<td>48.2 mg</td>
<td>331.09 ng/µL</td>
<td>52.974 µg</td>
<td>17.88/35.23</td>
<td>2.11</td>
<td>8.2</td>
</tr>
<tr>
<td>7</td>
<td>MSN</td>
<td>41.0 mg</td>
<td>290.64 ng/µL</td>
<td>46.502 µg</td>
<td>17.83/38.10</td>
<td>2.11</td>
<td>8.5</td>
</tr>
<tr>
<td>8</td>
<td>MSN</td>
<td>46.0 mg</td>
<td>263.10 ng/µL</td>
<td>42.096 µg</td>
<td>17.78/38.97</td>
<td>2.11</td>
<td>8.3</td>
</tr>
<tr>
<td>9</td>
<td>ICR</td>
<td>50.7 mg</td>
<td>347.06 ng/µL</td>
<td>55.530 µg</td>
<td>18.03/34.77</td>
<td>2.09</td>
<td>8.5</td>
</tr>
<tr>
<td>10</td>
<td>ICR</td>
<td>32.2 mg</td>
<td>215.83 ng/µL</td>
<td>34.533 µg</td>
<td>17.66/36.45</td>
<td>2.12</td>
<td>8.2</td>
</tr>
<tr>
<td>11</td>
<td>ICR</td>
<td>44.2 mg</td>
<td>261.85 ng/µL</td>
<td>41.896 µg</td>
<td>17.77/33.17</td>
<td>2.13</td>
<td>8.3</td>
</tr>
<tr>
<td>12</td>
<td>ICR</td>
<td>38.2 mg</td>
<td>247.66 ng/µL</td>
<td>39.626 µg</td>
<td>17.83/39.20</td>
<td>2.12</td>
<td>8.3</td>
</tr>
<tr>
<td>13</td>
<td>ICR</td>
<td>42.0 mg</td>
<td>278.96 ng/µL</td>
<td>44.634 µg</td>
<td>17.97/37.30</td>
<td>2.11</td>
<td>8.9</td>
</tr>
<tr>
<td>14</td>
<td>ICR</td>
<td>37.2 mg</td>
<td>274.48 ng/µL</td>
<td>43.917 µg</td>
<td>17.98/38.91</td>
<td>2.12</td>
<td>8.7</td>
</tr>
<tr>
<td>15</td>
<td>ICR</td>
<td>30.7 mg</td>
<td>236.85 ng/µL</td>
<td>37.896 µg</td>
<td>17.83/36.06</td>
<td>2.12</td>
<td>9.2</td>
</tr>
<tr>
<td>16</td>
<td>ICR</td>
<td>43.3 mg</td>
<td>288.02 ng/µL</td>
<td>46.083 µg</td>
<td>18.02/35.53</td>
<td>2.12</td>
<td>9.4</td>
</tr>
</tbody>
</table>

†RT versus no RT data were collected using the reference gene Ywhaz. Cq = 40 indicates no amplification detected.

*No amplification was detected in at least 1 of the replicates in these no RT controls.
Table S2.11 – Primers

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>RefSeq Accession</th>
<th>Primer Sequence (5’-3’)</th>
<th>Product Length</th>
<th>Amplicon Location</th>
<th>T<sub>m</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ywhaz</td>
<td>NM_01174</td>
<td>F: TCCTATTCCCTCTGGGACAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: ATGGAAAGCTACATTACGGTT</td>
<td>92 bp</td>
<td>Exon 5; 2432-2523</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3’ UTR)</td>
<td></td>
</tr>
<tr>
<td>Sdha</td>
<td>NM_02328</td>
<td>F: CCGCTCCTACTGATAAGGAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GGCCAACTCAATCCCTTAC</td>
<td>179 bp</td>
<td>Exon 12; 2015-2193</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ORF, 3’ UTR)</td>
<td></td>
</tr>
<tr>
<td>P2x7</td>
<td>NM_011027</td>
<td>F: CGAATTATGGCACCGTCAAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TCTCCGTACCTCTGCTATG</td>
<td>150 bp</td>
<td>Exons 1, 2; 234-383</td>
<td>57°C</td>
</tr>
<tr>
<td>Epor</td>
<td>NM_010149</td>
<td>F: GTCCGATTCTGGCATCTCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GGACAAGGCTGTTCATAG</td>
<td>107 bp</td>
<td>Exon 8; 1519-1625</td>
<td>58°C</td>
</tr>
<tr>
<td>Fhit</td>
<td>NM_010210</td>
<td>F: CAAACGATTTCCCAAGGTTAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GGGTACAATAAAGAGTGGTAG</td>
<td>89 bp</td>
<td>Exon 7; 697-763</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3’ UTR)</td>
<td></td>
</tr>
<tr>
<td>Cmklr1</td>
<td>NM_00815</td>
<td>F: ATCTTACACCACCATGCCACG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GTATACACACTGAAAGAGAC</td>
<td>95 bp</td>
<td>Exon 3; 2003-2097</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3’ UTR)</td>
<td></td>
</tr>
<tr>
<td>Npsr1</td>
<td>NM_175678</td>
<td>F: GTAGAGGGAACTAAAGGAATT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TAGACAAAGACCTGAGGAGAT</td>
<td>106 bp</td>
<td>Exon 10; 2866-2971</td>
<td>57°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3’ UTR)</td>
<td></td>
</tr>
<tr>
<td>Tac1</td>
<td>NM_009311</td>
<td>F: ACGCAGTATCTTTATCGCTCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: AGAATCACAAGGGCGTTAC</td>
<td>167 bp</td>
<td>Exon 7; 502-668</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3’ UTR)</td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td>NM_009804</td>
<td>F: TTCCCACTTGAGATAGTGGTGAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: CTGAAAGCAACCAACACGG</td>
<td>119 bp</td>
<td>Exon 13; 2358-2476</td>
<td>56°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3’ UTR)</td>
<td></td>
</tr>
</tbody>
</table>

Table S2.12 – qPCR quality control

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>PCR Efficiency</th>
<th>Linear Dynamic Range</th>
<th>r<sup>2</sup></th>
<th>Slope</th>
<th>y Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ywhaz</td>
<td>98.375%</td>
<td>C<sub>q</sub>: 17.60-27.71</td>
<td>0.998</td>
<td>-3.362</td>
<td>25.020</td>
</tr>
<tr>
<td>Sdha</td>
<td>97.271%</td>
<td>C<sub>q</sub>: 17.97-28.19</td>
<td>0.998</td>
<td>-3.389</td>
<td>25.472</td>
</tr>
<tr>
<td>P2x7</td>
<td>96.354%</td>
<td>C<sub>q</sub>: 27.06-33.29</td>
<td>0.989</td>
<td>-3.412</td>
<td>34.583</td>
</tr>
<tr>
<td>Epor</td>
<td>99.573%</td>
<td>C<sub>q</sub>: 25.42-31.47</td>
<td>0.998</td>
<td>-3.332</td>
<td>32.743</td>
</tr>
<tr>
<td>Fhit</td>
<td>104.902%</td>
<td>C<sub>q</sub>: 26.25-33.86</td>
<td>0.990</td>
<td>-3.210</td>
<td>33.346</td>
</tr>
<tr>
<td>Cmklr1</td>
<td>98.375%</td>
<td>C<sub>q</sub>: 27.92-35.92</td>
<td>0.994</td>
<td>-3.362</td>
<td>35.382</td>
</tr>
<tr>
<td>Npsr1</td>
<td>99.305%</td>
<td>C<sub>q</sub>: 30.68-34.69</td>
<td>0.989</td>
<td>-3.339</td>
<td>38.136</td>
</tr>
<tr>
<td>Tac1</td>
<td>97.414%</td>
<td>C<sub>q</sub>: 23.69-29.79</td>
<td>0.997</td>
<td>-3.385</td>
<td>31.181</td>
</tr>
<tr>
<td>Cat</td>
<td>97.228%</td>
<td>C<sub>q</sub>: 28.24-34.31</td>
<td>0.987</td>
<td>-3.390</td>
<td>35.793</td>
</tr>
</tbody>
</table>