Query 1 (Figure 2): Find the counts of crystal structures for all protein kinases and display top 10 of them in descending order of their counts.

```sparql
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/#>
SELECT (STR(?geneName) As ?Gene_Name) (COUNT(*) AS ?No_Structures) WHERE {
  ?gene prokino:hasPrimaryName ?geneName .
  ?gene prokino:hasSequence ?seq .
  ?seq prokino:hasProteinStructure ?struct
} GROUP BY ?geneName ORDER BY DESC(?No_Structures) LIMIT 10
```

Query 2 (Figure 3): Find the counts of isoforms for all protein kinases and display top 10 of them in descending order of their values.

```sparql
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/#>
SELECT (STR(?geneName) AS ?Gene_Name) (COUNT(*) AS ?No_Sequences) WHERE {
  ?gene prokino:hasPrimaryName ?geneName .
  ?gene prokino:hasSequence ?seq .
  filter( regex( str(?seq), "Isoform" ) || regex( str(?seq), "UniProt" ) )
} GROUP BY ?geneName ORDER BY DESC(?No_Sequences) LIMIT 10
```

Query 3 (Figure 4): Counts of number of pathways associated with all protein kinases. Top 10 kinases with the most number of pathways are displayed in descending order.

```sparql
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/#>
SELECT (STR(?geneName) AS ?Gene_Name) (COUNT(*) AS ?No_Pathways) WHERE
```
Query 4 (Figure 5) Find the counts of different cancer types implicated in protein kinases and display top 10 of them in descending order of their values.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/>

SELECT (STR(?geneName) AS ?Gene_Name) (COUNT(*) AS ?No_CancerTypes) WHERE
{
 ?gene prokino:hasPrimaryName ?geneName .

 { SELECT ?gene ?cancer WHERE
 {
 ?gene prokino:hasMutation ?mut .
 ?mut prokino:implicatedIn ?cancer
 } GROUP BY ?gene ?cancer
 } GROUP BY ?geneName
}
ORDER BY DESC(?No_CancerTypes)
LIMIT 10

Query 5a (Figure 6): Find the counts of substitution missense mutations (at least 4) implicated in different types of cancer, and display them in descending order of the counts.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/>
SELECT (STR(?cancerName) AS ?CancerType) (COUNT(*) AS ?No_Mutations)
WHERE
{
 ?gene prokino:hasMutation ?mut .
 ?mut rdf:type prokino:Missense .
 ?cancer rdfs:label ?cancerName
}
GROUP BY ?cancerName
HAVING (count(distinct *) >= 4)
ORDER BY DESC(?No_Mutations)

Query 5b (Figure 6): Find the counts of protein kinases having missense mutations implicated in different types of cancer, and display them in descending order of the counts.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/>
SELECT (str(?cancerName) AS ?CancerType) (COUNT(*) AS ?No_Genes)
WHERE
{
 ?cancer rdfs:label ?cancerName

 {?gene ?cancer}
 SELECT ?gene ?cancer WHERE
 {
 ?gene prokino:hasMutation ?mut .
 ?mut rdf:type prokino:Missense .
 }
 GROUP BY ?gene ?cancer
}
GROUP BY ?cancer ?cancerName
HAVING (count(distinct *) >= 2)
ORDER BY desc(?No_Genes)

Query 6 (Figure 7): Find the counts of protein kinases having missense mutations implicated in haematopoietic neoplasm and display top 10 of them in descending order of the counts.
Query 7 (Suppl. Figure 2): Find the counts of different mutations (of all types) for all kinase genes and display the top 10 in the descending order

```
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/>

SELECT (STR(?geneName) AS ?Gene_Name) (COUNT(*) AS ?No_Mutations) WHERE {
  ?gene prokino:hasMutation ?mut .
  ?mut prokino:implicatedIn prokino:haematopoietic_neoplasm .
  ?mut rdf:type prokino:Missense .
} GROUP BY ?geneName
ORDER BY DESC(?No_Mutations)
LIMIT 10
```

Query 8 (Suppl. Figure 3): Find the counts of substitution missense mutations for all genes and display top 10 of them in descending order

```
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/>

SELECT (STR(?geneName) AS ?Gene_Name) (COUNT(*) AS ?No_Mutations) WHERE {
  ?gene prokino:hasMutation ?mut .
  ?gene prokino:hasPrimaryName ?geneName .
  ?mut rdf:type prokino:Missense .
} GROUP BY ?gene ?geneName
ORDER BY DESC(?No_Mutations)
LIMIT 10
```
GROUP BY ?gene ?geneName
ORDER BY DESC(?No_Mutations)
LIMIT 10

Query 9 (Suppl. Figure 4): Find the counts of protein kinases (at least 2) having mutations (of any type) implicated in different types of cancer and display them in descending order
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/#>
SELECT (str(?cancername) AS ?Cancer_Type) (COUNT(*) AS ?No_Genes) WHERE {
 {
 SELECT ?gene ?cancer WHERE {
 ?gene prokino:hasMutation ?mut .
 }
 GROUP BY ?gene ?cancer
 }
} GROUP BY ?cancer ?cancername
HAVING (count(distinct *) >= 2)
ORDER BY desc(?No_Genes)

Query 10 (Suppl. Figure 5): Find the counts of protein kinases (at least 4) participating in pathways and display them in descending order; include only pathways with 4 or more participating kinases
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/#>
SELECT (STR(?pathwayname) AS ?Pathway) (COUNT(*) AS ?No_Genes) WHERE {
 ?pathway prokino:hasPrimaryName ?pathwayname .
 {
 ?gene prokino:hasMutation ?mut .
 }
 GROUP BY ?pathway ?gene
 }
}
GROUP BY ?pathway ?pathwayname
HAVING (count(distinct *) >= 4)
ORDER BY DESC(?No_Genes)

Query 11 (Suppl. Figure 6). Find the counts of pathways in which mutated protein kinases participate and display them in descending order; include only kinases with 4 or more pathways in which they participate

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/#>
SELECT (STR(?geneName) AS ?Gene_Name) (COUNT(*) AS ?No_Pathways) WHERE
{
?gene prokino:hasPrimaryName ?geneName .
{
SELECT ?gene ?pathway WHERE
{
?gene prokino:hasMutation ?mut .
}
GROUP BY ?gene ?pathway
}
}
GROUP BY ?geneName
HAVING (count(distinct *) >= 4)
ORDER BY DESC(?No_Pathways)

Query 12 (Suppl. Figure 7): Find the counts of protein kinases having mutations (of any type) in various primary sites and display them in descending order

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/#>
SELECT (STR(?primarysite) AS ?PrimarySite) (COUNT(*) AS ?No_Genes) WHERE
{
{
SELECT ?gene ?primarysite WHERE
{
?gene prokino:hasMutation ?mut .
?mut prokino:hasPrimarySite ?primarysite .
}
GROUP BY ?primarysite ?gene
}
}
GROUP BY ?primarysite
ORDER BY DESC(?No_Genes)

Query 13 (Suppl. Figure 8): Find the counts of different mutations (all types) for all sub-domains and display them in descending order
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/#>
SELECT (STR(?subdomainName) AS ?Subdomain_Name) (COUNT(*) AS ?No_Mutations) WHERE
{
 ?gene prokino:hasMutation ?mutation .
 ?subdomain rdf:type ?subdomainType .
 ?subdomainType rdfs:label ?subdomainName
}
GROUP BY ?subdomainType ?subdomainName
ORDER BY DESC(?No_Mutations)

Query 14 (Suppl. Figure 9): Find the counts of substitution missense mutations of the protein kinase FLT3 all having the primary site of Haematopoietic and Lymphoid tissue, and located in various sub-domains and display them in descending order.
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prokino: <http://om.cs.uga.edu/prokino/1.0/#>
PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT (STR(?subdomainName) AS ?Subdomain_Name) (COUNT(*) AS ?No_Mutations) WHERE
{
 prokino:FLT3 prokino:hasMutation ?mutation .
 ?mutation prokino:hasPrimarySite "haematopoietic_and_lymphoid_tissue" .
 ?subdomain rdf:type ?subdomainType .
 ?subdomainType rdfs:label ?subdomainName
 OPTIONAL {
 ?subdomain rdfs:label ?betweenType
 BIND(afn:substring(STR(?betweenType), 22) AS ?Between_Subs_Details)
 }
}
GROUP BY ?subdomainType ?subdomainName ?Between_Subs_Details
ORDER BY DESC(?No_Mutations)