A computational analysis of the dynamic roles of talin, Dok1, and PIPKI for integrin activation - Supplementary Table

Florian Geier¹,², Georgios Fengos¹, Dagmar Iber¹,*

¹ ETH Zürich, Department of Biosystems Science and Engineering (D-BSSE), Mattenstrasse 26, 4058 Basel, Switzerland; ² new address: Biozentrum, Klingelbergstrasse 70, 4056 Basel, Switzerland

* E-mail: Corresponding dagmar.iber@bsse.ethz.ch
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>k1on</td>
<td>0.68</td>
<td>0.4</td>
</tr>
<tr>
<td>k1off</td>
<td>19.749</td>
<td>10.467</td>
</tr>
<tr>
<td>k2on</td>
<td>2.353</td>
<td>0.950</td>
</tr>
<tr>
<td>k2off</td>
<td>0.706</td>
<td>0.283</td>
</tr>
<tr>
<td>k3aon</td>
<td>0.106</td>
<td>0.117</td>
</tr>
<tr>
<td>k3aoff</td>
<td>0.009</td>
<td>0.014</td>
</tr>
<tr>
<td>k3bon</td>
<td>0.018</td>
<td>0.055</td>
</tr>
<tr>
<td>k3boff</td>
<td>0.191</td>
<td>0.609</td>
</tr>
<tr>
<td>k5on</td>
<td>2.154</td>
<td>2.128</td>
</tr>
<tr>
<td>k5off</td>
<td>313.8</td>
<td>319.7</td>
</tr>
<tr>
<td>k6on</td>
<td>2.107</td>
<td>2.093</td>
</tr>
<tr>
<td>k6off</td>
<td>23.87</td>
<td>24.26</td>
</tr>
<tr>
<td>k7</td>
<td>14.89</td>
<td>15.09</td>
</tr>
<tr>
<td>k8</td>
<td>14.85</td>
<td>15.21</td>
</tr>
<tr>
<td>k9</td>
<td>14.89</td>
<td>15.07</td>
</tr>
<tr>
<td>k10on</td>
<td>3.423</td>
<td>2.042</td>
</tr>
<tr>
<td>k10off</td>
<td>0.666</td>
<td>0.374</td>
</tr>
<tr>
<td>k11a</td>
<td>0.214</td>
<td>0.143</td>
</tr>
<tr>
<td>k11b</td>
<td>0.0006</td>
<td>0.0015</td>
</tr>
<tr>
<td>k12</td>
<td>0.093</td>
<td>0.1</td>
</tr>
<tr>
<td>k13</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>k14</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>k15</td>
<td>0.0015</td>
<td>0.0014</td>
</tr>
<tr>
<td>k16on</td>
<td>2.071</td>
<td>2.075</td>
</tr>
<tr>
<td>k16off</td>
<td>0.704</td>
<td>0.692</td>
</tr>
<tr>
<td>k17offA</td>
<td>2.839</td>
<td>2.902</td>
</tr>
<tr>
<td>k17offB</td>
<td>0.03</td>
<td>0.033</td>
</tr>
<tr>
<td>INT<sub>tot</sub></td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>L<sub>tot</sub></td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>TAL<sub>tot</sub></td>
<td>6.98</td>
<td>0.68</td>
</tr>
<tr>
<td>DOK<sub>tot</sub></td>
<td>1.74</td>
<td>6.05</td>
</tr>
<tr>
<td>PIPKI<sub>tot</sub></td>
<td>0.88</td>
<td>1.38</td>
</tr>
<tr>
<td>SRC<sub>tot</sub></td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Table S1. Mean parameter values of group 1 (high TAL:INT, Figure 3 main text) and group 2 (high DOK:INT, Figure 3 main text). On-rates are related to the KD value mentioned in the main text as $kon = koff/KD$.