Supplementary Text S1

The modified Watterson estimator that accounts for DNA pooling, sequencing errors and ascertainment bias for singletons is

$$\hat{\theta}_W = \frac{S - \sum_s 10^{-\frac{pSNP(s)}{10}}}{\sum_i L(i) \left(\sum_{j=2}^{\min(n_s(i), n_0)} P_c(j|n_s(i), n_0) a_j - \sum_{k=1}^{n_0-1} \frac{n_s(i)}{n_0} \left(\frac{k}{n_0} \right) n_s(i) - 2 \right)}$$

where S is the number of segregating sites that are not singletons, $pSNP(s)$ is the Phred-scaled probability that the sth SNP is a sequencing error, $n_s(i)$ and $L(i)$ are the read depth of the ith cluster of sequences (that is, a contiguous region with constant read depth) and n_0 is the number of independent chromosomes in the sample (which is twice the sample size). $P_c(j|n_s, n_0)$ is the probability that the output of n_s random extractions (with replacement) from a box of n_0 different objects contains exactly j different objects. An explicit formula for $P_c(j|n_s, n_0)$ is

$$P_c(j|n_s, n_0) = \sum_{i=0}^{j-1} (-1)^i \binom{n_0}{j} \binom{j}{i} \binom{j-i}{n_s}$$

The estimator for pairwise nucleotide diversity which includes corrections for sequencing errors and absence of singletons is

$$\hat{\Pi} = \frac{1}{L} \sum_i \left(\frac{n_0}{n_0 - 1 - 2 \sum_{k=1}^{n_0-1} (k/n_0)^{n_s(i)-2}} \right) \frac{2m_i(n_s(i) - m_i)}{n_s(i)(n_s(i) - 1)} \left(1 - 10^{-\frac{pSNP(i)}{10}} \right)$$

where m_i is the minor allele count of the ith SNP.

The formula for \hat{F}_{ST} between two populations using the definition of Nei (Molecular Evolutionary Genetics, 1987) is

$$\hat{F}_{ST} = 1 - \frac{\hat{\theta}_{\Pi_1} + \hat{\theta}_{\Pi_2}}{2\Pi_a + c_s(\hat{\theta}_{\Pi_1} + \hat{\theta}_{\Pi_2})}$$

where $\hat{\theta}_{\Pi_1}$ and $\hat{\theta}_{\Pi_2}$ are the nucleotide diversity estimators for the two populations, Π_a is the pairwise nucleotide diversity between sequences coming
from different populations and c_s is a correction factor given by

\[
c_s = \sum_{k=1}^{n_0^{(1)}+n_0^{(2)}-1} \frac{1}{k} \sum_{l=0}^{k} \left(\frac{n_0^{(1)}}{n_0^{(2)}} \right) \left(\frac{n_0^{(2)}}{n_0^{(1)}} \right) \times \]

\[
\times \left\{ (y_2 - x_2)x_1 y_1 [n_1^{(1)} - 2 - x_1^{(1)} - 2] + (y_1 - x_1)x_2 y_2 [n_2^{(2)} - 2 - x_2^{(2)} - 2] +
-n_s^{(1)} + n_s^{(2)} x_1 y_1 x_2 y_2 [x_1^{(2)} - 2 + y_1^{(2)} - 2] + [x_2^{(2)} - 2 + y_2^{(2)} - 2] +
+ 2 x_1 y_1 x_2 y_2 [x_1^{(1)} - 2 - y_1^{(1)} - 2] + [x_2^{(1)} - 2 - y_2^{(1)} - 2] \right\}
\]

with $x_1 = (k - l)/n_0^{(1)}$, $x_2 = l/n_0^{(2)}$, $y_1 = 1 - x_1$ and $y_2 = 1 - x_2$.

The above estimators $\hat{\theta}_W$, $\hat{\theta}_\Pi$ and $\Pi_a + c_s(\hat{\theta}_\Pi + \hat{\theta}_\Pi^2)/2$ are unbiased estimators of θ (Ferretti, Ramos-Onsins and Perez-Enciso, personal communication).