Text S1: Derivation of Equations (8-10)

Without loss of generality, suppose that there are two populations. For a random marker, the allele frequencies for these two populations are \(p_1 \) and \(p_2 \). Denote the variance-covariance matrix of \(p_1 \) and \(p_2 \) by
\[
V_F = \begin{pmatrix}
\Sigma^2_1 & \Sigma_{12} \\
\Sigma_{12} & \Sigma^2_2
\end{pmatrix}.
\]
Suppose that individuals 1, 2, \(N_1 \) are from population 1 and individuals \(N_1 + 1, N_1 + 2, \cdots, N \) are from population 2. For an individual from population 1, say individual 1, we can write the marginal probability of variant allele count \(C_1 \) as
\[
P(C_1) = \sum_{C_2, \cdots, C_N} dp_1 dp_2 P(C_1, C_2, \cdots, C_N|p_1, p_2) P(p_1, p_2)
\]
\[
= \sum_{C_2, \cdots, C_N} dp_1 dp_2 P(C_1|p_1) P(C_2, \cdots, C_N|p_1, p_2) P(p_1, p_2)
\]
\[
= \int dp_1 P(C_1|p_1) \int dp_2 P(p_1, p_2) \left[\sum_{C_2} P(C_2|p_1) \right]^{N_1-1} \left[\sum_{C_N} P(C_N|p_2) \right]^{N-N_1}
\]
\[
= \int dp_1 P(C_1|p_1) \int dp_2 P(p_1, p_2).
\]
Similarly, we have, for an individual in population 2, say, \(C_N \),
\[
P(C_N) = \int dp_2 P(C_N|p_2) \int dp_1 P(p_1, p_2),
\]
and their joint marginal probability is
\[
P(C_1, C_N) = \int dp_1 dp_2 P(p_1, p_2) P(C_1|p_1) P(C_N|p_2).
\]
For two individuals in the same population, say \(C_1 \) and \(C_2 \),
\[
P(C_1, C_2) = \int dp_1 P(C_1|p_1) P(C_2|p_2) \int dp_2 P(p_1, p_2).
\]
Using these marginal probabilities and the Hardy-Weinberg proportion, we can prove that
\[
\hat{C}_1 = \sum_{C_1} C_1 P(C_1) \hat{C}_1 = \int dp_1 \int dp_2 P(p_1, p_2) \sum_{C_1} C_1 P(C_1|p_1)
\]
\[
= \int dp_1 P(p_1) \left[2p_1^2 + 2p_1 (1 - p_1) \right] = 2\hat{p}_1,
\]
and similarly
\[
\hat{C}_2 = 2\hat{p}_1 + 2\hat{p}_2^2,
\]
and hence
\[
\text{VAR}(C_1) = 2\Sigma^2_1 + 2\hat{p}_1 (1 - \hat{p}_1),
\]
which is Equation (8) in the main text. Equations (9) and (10) in the main text can be similarly proven.