Effect of G protein $\beta\gamma$ on PLCβ activation. CHO cells stably expressing M2 muscarinic receptor were transiently transfected with α_6, β_1, YFP-γ_9 subunits and PH-mCh sensor. The cells were imaged as described in the materials and methods section. Briefly, they are mounted on imaging chamber and sequentially exposed to 100 μM of M2 receptor agonist (carbachol) followed by 100 μM of antagonist (atropine). Images for YFP-γ_{11} and PH-mCh were captured at every 10 sec interval. Translocation of YFP-γ_{11} in response to M2 receptor activation was observed indicating that receptor activation status. The translocating $\beta\gamma$ reverse translocated on plasma membrane on deactivation of the receptor. On the other hand no change in localization of PH-mCh was observed indicating towards failure of G$\beta\gamma$ to activate PLCβ which leads to PIP2 hydrolysis. Substitution of Gγ_{11} with other gamma subunits (γ_2 or γ_3) has no impact on the observations.

To ascertain that the cells are not mutated for PLCβ activity, transient introduction of a Gα_q coupled receptor, M3 induced significant translocation of PH-mCh indicating that the cells used in the study were completely functionally proficient. These observations clearly indicated that no PLCβ activation through G$\beta\gamma$ in living cells is detected.