a. *glk* Glucokinase

One of the detected TSSs of the *glk* gene (*glkP1-P2*) is different from one previously reported by one nucleotide (36).

Name: *glkP*

+1: 2507483

Sequence: ttacagggagcccttcgccttcgccggtgcgttatgtgcccaggatattacagtggaAagaattttgactttgcc

Sequence of the JM101 sample.

Sequence of the PB12 and PB12rpoS- mixt sample.

Sequence of the 1k6, plus sample.

Sequence of the PB11 sample.

Sequence of the 11rpos sample.

Sequence of the PB12 sample.

Sequence of the 12rpos sample.

Table: PB11, PB12 Genomic seq.

Table: PB11 JM101

Table: glk ORF

ruler 0 310 320 330 340 350 360 370 380

glkP1-P2 A

glkP3-P4 C

Start codon
a. *glk* Glucokinase

Sequence of the PB12 and PB12rpoS-mixt sample.

Sequence of the JM101 sample.

Sequence of the JM101 sample.
b. *pgi* Glucosephosphate isomerase

The detected TSS of the *pgi* gene is the same as the one previously reported (37).

Name:	pgip
+1:	4231745
Sequence:	acattacgctaacggcactaaacaccatcacaattttctgtgcactgccctacaatctctccaaagtcacaattctcacaaatc

Start codon

genomic seq.

<table>
<thead>
<tr>
<th>JM101</th>
<th>PB11, PB12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACAACACATCATTTTTCTGACCGTAGCTCTACAATTCACAAATCAAGAGATATGCTATGAAAC</td>
<td>TTTTTTTTTTTTTAAAATTCACATTTTCTCATAAAATGAAGAGTAGTATTGCTATGAAAC</td>
</tr>
</tbody>
</table>

Start codon

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>430</td>
<td>440</td>
<td>450</td>
<td>460</td>
<td>.</td>
<td>470</td>
<td>.</td>
<td>480</td>
<td>.</td>
<td>490</td>
<td>.</td>
</tr>
</tbody>
</table>

ruler

<table>
<thead>
<tr>
<th>0</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Sequence of the JM101 sample.

Sequence of the PB11 and PB12 mixt sample.
One of the detected TSSs of the \(pfkA \) gene (\(pfkA^{P1-P2} \)) is the same as the one previously reported (39).
Two independent experiments were performed for this gene.
d. *tpiA* Triosephosphate isomerase

A previously reported TSS of the *tpiA* gene was not detected (40).

Name: tpiAp
t+: 4109547
Sequence: tctatactgttcacagaccgctcccgcgggccccatctctttattccacgtgggagactcttttaaacattccgaca
d. tpiA Triosephosphate isomerase

Sequence of the JM101 sample.

Sequence of the PB11 sample.

Sequence of the PB12 sample.
e. **gapA** Glyceraldehyde 3-phosphate dehydrogenase A

A nucleotide sequence for this band was not obtained.

The detected TSS of the gapA gene is the same as one previously reported (41,43).

Sequence of the JM101 sample.
e. \textit{gapA} Glyceraldehyde 3-phosphate dehydrogenase A

Sequence of the JM101 sample.

Sequence of the PB12 sample.

Sequence of the PB12 and PB12rpoS- mixt sample.
1. **epd** D-erythrose 4-phosphate dehydrogenase

The detected TSS of the *epd* gene is the same as the one previously reported (45).

A previously reported TSS of the *pgk* gene was not detected (45).
g. gpmA Phosphoglyceromutase A

One of the detected TSSs of the gpmA gene is different from one previously inferred by two nucleotides (46).

Name: gpmAp

+1: 786852

Sequence:

-35 tttcctattgtatgctcaagcatgattcctcttcgctggctgctattacttaaagagtatttgaagagaattattctttc

Sequence of the JM101 sample.

Sequence of the PB11 and PB11rpoS- mixt sample.

Sequence of the PB12 and PB12rpoS- mixt sample.

JM101

PB12, PB12rpoS-

gpmA ORF

Genomic seq.

PB11, PB11rpoS-

ruler

<table>
<thead>
<tr>
<th>410</th>
<th>420</th>
<th>430</th>
<th>440</th>
<th>450</th>
<th>460</th>
<th>470</th>
<th>480</th>
<th>490</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
h.1. *eno* Enolase

Sequence of the JM101 sample.

Sequence of the PB11 sample.

Sequence of the PB12 sample.

Sequence of the PB11 and PB11rpoS- mixt sample.

Sequence of the JM101 sample.

Sequence of the PB12 and PB12rpoS- mixt sample.

Sequence of the JM101 sample.
h.2 *eno* Enolase

Four independent experiments for this gene produced the same results.

Three previously reported TSSs for this gene with long untranslated regions were not detected (47).
i-1 pykF Pyruvate kinase F

Sequence of the PB11 and PB12 mixt sample.

Sequence of the JM101 sample.

Sequence of the JM101 sample.

Sequence of the PB11 and PB12 mixt sample.
i-2 pykA Pyruvate kinase A

Two independent experiments produced the same results.

Sequence of the JM101 sample.

Sequence of the PB12 sample.

- **JM101**
 - pykA ORF
 - Genomic seq.

- **PB12**
 - pykA ORF
 - Genomic seq.

- **PB12rpoS**
 - pykA ORF
 - Genomic seq.

- **ruler**

Two independent experiments produced the same results.
i-2 pykA Pyruvate kinase A

Sequence of the JM101 sample.

Sequence of the PB12 sample.

Sequence of the PB12 and PB12rpoS- mixt sample.

Sequence of the JM101 sample.
Transcriptional regulator of the Pyruvate dehydrogenase

The detected TSS of the pdhR gene is the same as the one previously reported (51,52).
Sequence of the JM101 sample.

Sequence of the PB11 sample.

Sequence of the PB11rpoS- sample.

Sequence of the PB12 sample.

Sequence of the PB12rpoS- sample.

Sequence of the JM101rpoS- sample.

j-1 \textit{pdhR} Transcriptional regulator of the Pyruvate dehydrogenase
The detected TSS of the aceE gene is different from a previously reported by one nucleotide (50,51).
k. poxB Pyruvate oxidase

The detected TSS of the poxB gene is the same as the one previously reported (57,58).

Sequence of the PB11 and PB12 mixt sample.

Sequence of the JM101 sample.

Sequence of the PB11 and PB12 mixt sample.
The detected TSS of the `acs` gene is the same as the one previously reported (60, 61).

Two different methodologies were utilized for the detection of the TSS.

Sequence of the PB11 sample.

Sequence of the PB12 sample.