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Abstract

With a requirement of miniaturization in modern vibrating screens, the vibration synchroni-

zation method can no longer meet the process demand, so the controlled synchronization

method is introduced in the vibrating screen to achieve zero phase error state and realize

the purpose of increasing the amplitude. In this article, the controlled synchronization of a

vibrating screen driven by two motors based on improved sliding mode controlling method is

investigated. Firstly, according to the theory of mechanical dynamics, the motion state of the

vibrating screen is simplified as the electromechanical coupling dynamical model of a vibrat-

ing system driven by two inductor motors. And then the synchronization conditions and sta-

bility criterion of the vibrating system are derived and numerically analyzed. Based on a

master-slave controlling strategy, the controllers of two motors are respectively designed

with Super-Twisting sliding mode control (ST-SMC) and backstepping second-order com-

plementary sliding mode control (BSOCSMC), while the uncertainty is estimated by an

adaptive radial basis function neural network (ARBFNN). In addition, Lyapunov stability

analysis is performed on the two controllers to prove their stability theoretically. Finally, sim-

ulation analysis is conducted based on the dynamics model in this paper.

1. Introduction

Vibrating machinery is a common mechanical equipment in industrial production, which is

used for material screening and conveying, such as vibrating screen, vibrating conveyor [1, 2].

With the improvement of science and technology, vibrating machines like vibrating screens

no longer make use of the traditional rigid transmission method. They use the principle of

vibration synchronization to force the motors on the vibrating screen to work at the same

speed. Blekhman [3, 4] was the first to investigate the theory of vibration synchronization. He

used two motors to drive two eccentric rotors (ERs) and mounted them on a shaking table.

After certain conditions are met, the two motors can work synchronously. Wen et al. [5] have

conducted in-depth research and development on vibration synchronization theory. They

used the averaging method as well as Hamilton’s principle to derive the synchronization con-

ditions of vibration systems and the stability conditions of synchronous working. In addition,
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they also proposed the theory of vibration synchronous transmission and space motion vibra-

tion synchronization, and also conducted an in-depth study of multi-frequency synchroniza-

tion and controlled synchronization. Zhao et al. [6–9] proposed the criterion theory of the

small parameter averaging method by adding disturbance parameters to vibration systems.

Vibrating screens by vibration synchronization have gained great economic benefits. How-

ever, for miniaturized vibrating screens, it is difficult for ERs to achieve zero phase error by

vibration synchronization, which can affect screening efficiency and may even lead to clog-

ging. Controlled synchronization is a good solution in order to meet miniaturization require-

ments. The theory of controlled synchronization has been applied by many scholars in

different fields, proportional-integral-derivative (PID) and sliding mode control are two of the

more mature control methods. Jia et al. [10, 11] investigated the multi-frequency synchroniza-

tion problem of a multi-motor vibration system with fuzzy PID control and experimentally

proved the feasibility and effectiveness of this method. In their research, fuzzy PID control has

good controlling effect, but the response time is long and the robustness of fuzzy PID is not

considered. Sliding mode control is a nonlinear control method with fast response and good

robustness. Kong et al. [12, 13] designed a synchronization controller with adaptive sliding

mode control based on master-slave control for the multi-motor compound synchronization.

Furthermore, Fang et al [14] also used adaptive sliding mode control to design the synchroni-

zation controller. Zhang et al. [15] used adaptive sliding mode control for error tracking and

synchronization control of the electro-hydraulic shaker, and the controller performance was

excellent and robust. Adaptive sliding mode control is designed based on the convergence law,

which is highly robust only in the sliding mode phase and does not consider the convergence

performance in the arrival phase. In order to extend the range of robustness, Huang et al. [16–

18] applied an adaptive global sliding mode control to the controlled synchronization for mul-

tiple motors under the action of materials, and achieved both speed and phase synchroniza-

tion. Fang et al. [19] similarly designed an error controller by global sliding mode control,

which was used to investigate the synchronization problem of a three-motor vibration system.

The final simulation proves that the control method has better robustness. In addition, Xi et al.

[20] designed a robust control algorithm for adaptive global sliding mode to control a class of

chaotic synchronous systems. Although the adaptive global sliding mode control enhances the

global robustness, the chattering phenomenon is not well addressed. However, intelligent con-

trol has great advantages in weakening the chattering and improving the robustness. In the

research on position synchronization of manipulators, Zhai et al. [21] designed a neural net-

work controller based on sliding mode control to estimate the uncertainty of the system

online, which was able to significantly reduce the chattering. Shi et al. [22] combined fuzzy

control with sliding mode control to design an adaptive fuzzy sliding mode controller for syn-

chronous control of a spatial three-motor vibration system, and this control method reduced

jitter and improved robustness.

Most of the investigations on synchronous control of motors are based on field oriented

control, which has good control performance but complex structure. This paper is based on

model predictive control, which is robust and simple, and then combines intelligent control

with conventional control to improve the control performance of synchronous controllers. In

section 2, the vibrating screen is transformed into a dynamics model of a vibrating system

driven by two motors, and an electro-mechanical coupling model of the motor and the vibrat-

ing system is developed. In section 3, the synchronization conditions and stability conditions

of the ERs are derived by using the small parameter method. In section 4, based on the master-

slave control strategy, the controllers of two motors are designed separately by adopting the

modified SMC and combining with ARBFNN, then the stability analysis of the controllers

through Lyapunov theory is performed. In section 5, the synchronization and stability
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conditions are visualized and analyzed numerically, then the controlled synchronization is

simulated to verify the effectiveness and robustness of controllers. Finally, section 6 shows

some conclusions.

2. Dynamical model and induction motor model

2.1 Dynamical model of the vibrating system

Fig 1 shows the equivalent mechanical model of a vibrating screen driven by two motors.

According to Fig 1, the mathematical model of the vibration system can be established based

on the Lagrange equation.

The kinetic energy of the vibrating system is as follows:

T ¼ ½mð _x2 þ _y2Þ þ Jp _c2 þ
X2

i¼1

ðmið _xi
2 þ _yi

2Þ þ Ji _φi
2Þ�=2 ð1Þ

with

xi
yi

 !

¼
x

y

 !

þ
1 � c

c 1

 !
licosyi þ rcosφi
lisinyi þ rsinφi

 !

In Eq (1),m is the quality of the shaking table and motors. Jp is the rotational inertia of the

shaking table.m1 andm2 are the masses of the two eccentric rotors (ERs) and the ERs are

driven by motors. J1 and J2 are the rotational inertia of two motors. xi and yi are the coordi-

nates for ERs. l1 and l2 represent the distance between o and o1, o2, l1 = l2. θ1 and θ2 are the

position angles of two ERs. r indicates the radius of rotation of the ERs. φ1 and φ2 represent

the phase of two ERs, φ = (φ1+φ2)/2 and 2α = (φ1−φ2).

The potential energy of the vibrating system is as follows:

V ¼ kxx
2=2þ kyy

2=2þ kcc
2
=2 ð2Þ

Fig 1. Mechanical model of a vibrating screen driven by two motors.

https://doi.org/10.1371/journal.pone.0294726.g001
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In Eq (2), kx, ky and kψ are the spring stiffness of the vibration system in x, y and ψ direc-

tions, and kc ¼ kxðl0sinbaÞ
2
þ kyðl0cosbaÞ

2
.

The dissipated energy of the vibration system is as follows:

D ¼ fxx
2 þ fyy

2 þ fcc
2

ð3Þ

In Eq (3), fx, fy and fψ are the damping coefficients of the vibration system in x, y and ψ
directions, and fc ¼ fxðl0sinbaÞ

2
þ fyðl0cosbaÞ

2
.

The Lagrange equation of the vibrating system is as follows:

d
dt
@ðT � VÞ

@ _q
�
@ðT � VÞ

@q
þ
@D
@ _q
¼ Q ð4Þ

In Eq (4), q denotes generalized coordinates, and q ¼ ð x y c φ
1
φ

2
Þ
T
. Q denotes

generalized force, and Q ¼ ð 0 0 0 Te1 Te2 Þ
T
. Te1 and Te2 denote the electromagnetic

torque in Q.

Taking Eqs (1)–(3) into Eq (4) and simplifying them, the mathematical model of the vibra-

tion system can be obtained as follows:

MÂx þ fx _x þ kxx ¼
X2

i¼1

mir _φi
2cosφi

MÂy þ fy _y þ kyy ¼
X2

i¼1

mir _φi
2sinφi

JÂc þ fc _c þ kcc ¼
X2

i¼1

mirli _φi
2sinðφi � yiÞ

J1Âφ1 þ f1 _φ1 ¼ Te1 � TL1

J2Âφ2 þ f2 _φ2 ¼ Te2 � TL2

ð5Þ

TL1 and TL2 are indicated as:

TL1 ¼ m1r½Âycosφ1
� Âxsinφ

1
þ l1 _c2sinðφ

1
� y1Þ þ l1Âccosðφ1

� y1Þ�

TL2 ¼ m2r½Âycosφ2
� Âxsinφ

2
þ l2 _c2sinðφ

2
� y2Þ þ l2Âccosðφ2

� y2Þ�
ð6Þ

In Eq (5),M indicates the total mass,M =m+m1+m2. J denotes the total rotational inertia

of the vibrating system, J ¼ Mle2 � Jp þm1ðl12 þ r2Þ þm2ðl22 þ r2Þ. TL1 and TL2 denote load

torque.

2.2 Equation of state for induction motor

ω−ϕr−is is selected as the state variable to control the motor, so the equation of state of the

induction motor in coordinate αβ can be obtained as:

_�ra ¼ � �ra=Tr � npo=�rb þ Lmisa=Tr
_�rb ¼ npo=�ra � �rb=Tr þ Lmisb=Tr
_isa ¼ Lm�ra=ðsLsTrLrÞ þ Lmnpo�rb=ðsLsLrÞ � ðLm2 þ RsLrTrÞisb=ðsLsTrLrÞ þ usa=ðsLsÞ

_isb ¼ � Lmnpo�ra=ðsLsLrÞ þ Lm�rb=ðsLsLrTrÞ � ðLm2 þ RsLrTrÞisb=ðsLsTrLrÞ þ usb=ðsLsÞ

ð7Þ

Where, ω is the mechanical angular speed of the motor. isα and isβ are the stator current in
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coordinate αβ. ϕrα and ϕrβ are the rotor magnetic chains in coordinate αβ. usα and usβ are the

stator voltage in coordinate αβ. Ls and Rs are respectively indicates stator inductance and stator

resistance. Tr denotes the rotor time constant, Tr = Lr/Rr. Lr and Lm are respectively denotes

rotor inductance and mutual inductance coefficients. σ is magnetic leakage coefficient. σ = 1

−Lm2/(LsLr).
Based on ϕr and is we can calculate ϕs as:

ϕs ¼ ðLm=LrÞϕr � ðLr � LsLr
2=Lm

2Þis ð8Þ

The electromagnetic torque of the induction motor can be obtained as:

Te ¼ ð3=2Þnpϕs � is ð9Þ

Where,� denotes a fork product.

3. Synchronization conditions and stability conditions

When the vibration system is running steadily, the responses in x, y and ψ directions can be

obtained according to Eq (5).

x ¼ � rmr=mx½cosðφ1
þ gxÞ þ Zcosðφ2

þ gxÞ�

y ¼ � rmr=my½sinðφ1
þ gyÞ þ Zsinðφ2

þ gyÞ�

c ¼ � ðrmrrl=lemcÞ½sinðφ1
� y1 þ gcÞ þ Zsinðφ2

� y2 þ gcÞ�

ð10Þ

Where, mi ¼ 1 � ox
2=o0

2ði ¼ x; y;cÞ, rl = l1/le, zi ¼ fi=ð2
ffiffiffiffiffiffiffiffi
kiM

p
Þði ¼ x; yÞ, le2 ¼ J=M,

tangi ¼ 2zioi=o0miði ¼ x; y;cÞ, oi
2 ¼ ki=Mði ¼ x; yÞ, oc

2 ¼ kc=J, zc ¼ fc=2
ffiffiffiffiffiffiffi
kcJ

p
, rm =m1/

M, η =m2/m1. ω0 indicates the average angular velocity of ERs, o0 ¼

Z T0

0

_φdt=T0.

Introducing perturbation parameters into the vibration system, then _φ1 ¼ ð1þ ε1Þo0,

_φ2 ¼ ð1þ ε2Þo0,Âφ1 ¼ _ε1o0,Âφ2 ¼ _ε2o0. Taking Eq (10) into Eqs (5) and (6), then Eq (11) can

be obtained by using the small parameter averaging method and integrating.

J1 _�ε1
o0 þ f1o0ð1þ �ε1Þ ¼

�Te1 � �TL1 J2 _�ε2o0 þ f2o0ð1þ �ε2Þ ¼
�Te2 � �TL2 ð11Þ

�TL1 ¼ m1r2o0ða11
_�ε1
þ a12

_�ε2 þ b11
�ε1 þ b12

�ε2 þ k1Þ
�TL2

¼ m1r
2o0ða21

_�ε1 þ a22
_�ε2 þ b21

�ε1 þ b22
�ε2 þ k2Þ ð12Þ

with

k1 ¼ ðb11 þ b12Þ=2; k2 ¼ ðb21 þ b22Þ=2

a11 ¼ � ½rmcosgx=mx þ rmcosgy=my þ rmrl
2cosgc=mc�=2

a12 ¼ � Z½rmrl
2cosð� 2aþ y1 � y2 þ gcÞ=mc þ rmcosð� 2aþ gxÞ=mx2 þ rmcosð� 2a

þ gyÞ=my2�=2

b11 ¼ o0½rmsingx=mx þ rmsingy=my þ rmrl
2singc=mc�
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b12 ¼ Zo0½rmrl
2sinð� 2aþ y1 � y2 þ gcÞ=mc þ rmsinð� 2aþ gxÞ=mx þ rmsinð� 2aþ gyÞ=my�

a21 ¼ � Z½rmrl
2cosð2a � y1 þ y2 þ gcÞ=mc þ rmcosð2aþ gxÞ=mx þ rmcosð2aþ gyÞ=my�=2

a22 ¼ � Z
2½rmcosgx=mx þ rmcosgy=my þ rmrl

2cosgc=mc�=2

b21 ¼ Zo0½rmrl
2sinð2a � y1 þ y2 þ gcÞ=mc þ rmsinð2aþ gxÞ=mx þ rmsinð2aþ gyÞ=my�

b22 ¼ Z
2o0½rmsingx=mx þ rmsingy=my þ rmrl

2singc=mc�

According to Ref. [6], the electromagnetic torque when the vibration system reaches a

steady state is Eq (13).

�Tei ¼ Te0i � ke0i�ε iði ¼ 1; 2Þ ð13Þ

Where, Te0 ¼ � knpo0=ðk1np2o0
2 þ 1Þ, ke0 ¼ npkð� k1np2o0

3 þ o0Þ=ðk1np2o0
2 þ 1Þ

2
,

k1 ¼ np2Tr2, k ¼ 3npLm2Un
2=Rs2Rr .

Introducing a small parameter ε3 for the phase error, then taking Eqs (12)~(13) into Eq

(11), expanding Eq (11) with Taylor’s method at α = α0+ε3. We can get the Eq (14) as follows:

A0
_�ε ¼ B0

�ε þ v ð14Þ

with

A0 ¼ ð

a011 a120 0

a210 a022 0

0 0 1

Þ; B0 ¼ ð

b011 � b120 � b130

� b210 b022 � b230

o0=2 � o0=2 0

Þ; v ¼ ð v1 v2 0 Þ
T
; �ε

¼ ð �ε1
�ε2

�ε3 Þ
T

a0
11
¼ 1þ a110; a

0

22
¼ Zþ a220; v ¼ ð v1 v2 0 Þ

T
; _�ε ¼ ð _�ε1

_�ε2
_�ε3Þ

T
; �ε ¼ ð �ε1

�ε2
�ε3 Þ

T

b0
11
¼ � ½f1=ðm1r

2Þ þ ke01=ðm1r
2o0Þ þ b110�; b

0

22
¼ � ½f2=ðm1r

2Þ þ ke02=ðm1r
2o0Þ þ b220�

b130 ¼ � Zo0½rmcosð� 2a0 þ gxÞ=mx þ rmcosð� 2a0 þ gyÞ=my þ rmrl
2cosð� 2a0 þ y1 � y2

þ gcÞ=mc�

b230 ¼ Zo0½rmcosð2a0 þ gxÞ=mx þ rmcosð2a0 þ gyÞ=my þ rmrl
2cosð2a0 � y1 þ y2 þ gcÞ=mc�

v1 ¼ Te01=ðm1r
2o0Þ � f1=ðm1r

2Þ � k10; v2 ¼ Te02=ðm1r
2o0Þ � f2=ðm1r

2Þ � k20

When two ERs achieve synchronous motion, the perturbation parameters ε1 ¼ ε2 ¼ ε3 ¼ 0,

_ε1 ¼ _ε2 ¼ _ε3 ¼ 0. Therefore, Eq (14) can be tidied up to obtain the synchronization criterion

of the two ERs. The synchronization criterion are shown in Eq (15).

Te01 ¼ f1o0 þm1r2o0k10

Te02 ¼ f2o0 þm1r2o0k20

ð15Þ

Where, |Te01|�TeN1, |Te02|�TeN2. TeN1 and TeN2 are the rated electromagnetic torques.
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Since the vibration system achieves synchronization criterion, v = 0. Taking v = 0 into Eq

(14), we can get Eq (16).

A0
_�ε ¼ B0

�ε ð16Þ

Because |A0|6¼0, so Eq (14) can be rewritten as Eq (17)

_�ε ¼ ðA0
� 1B0Þ�ε ð17Þ

By jlI � A0
� 1B0j ¼ 0, we can obtain the characteristic equation of Eq (18) as follows:

l
3
þ d1l

2
þ d2lþ d3 ¼ 0 ð18Þ

Where, d1 = D1/D0, d2 = D2/D0, d3 = D3/D0, D3 ¼ ðb130b210 þ b011
b230 � b120b230 � b022

b130Þo0=2,

D2 ¼ ða210b130 þ a022b230 � a120b230 � a011b230Þo0=2þ b0
11
b0

22
� b120b210,

D1 ¼ � a210b120 � a011b022
� a022b011

� a120b210, D0 ¼ a011
a0

22
� a120a210.

When Eq (18) satisfies the Hurwitz condition, the synchronous state of the vibration system

is stable. So the stability conditions for synchronous motion are as follows:

d2 > 0

d3 > 0

d1d2 > d3

ð19Þ

8
><

>:

4. Design of controllers

The master-slave control strategy is selected to track and control the two motors, then the

structure of the control system is shown in Fig 2. Motor 1 as the master motor, motor 2 as the

slave motor. Motor 2 follows the motion state of motor 1. We set ωd as the target speed, and ω1

is the actual speed of motor 1. The input of the control system is error 1, which generates the

controlled object u1 by the ST-SMC controller. u1 (torque Te1) is used as an input to MPTC to

control motor 1. Error 2 is generated by phase φ1 of ER1 and phase φ2 of ER2, similarly, error

2 generates controlled object u2 (torque Te2) by means of the BSOCSMC controller based on

ARBFNN estimation (AR-BSOCSMC). The structure of the MPTC is shown in Fig 3.

Fig 2. Structure of the control system.

https://doi.org/10.1371/journal.pone.0294726.g002
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4.1 Controller of the master motor

The equation of motion for motor 1 is represented by Eq (20).

_o1 ¼ 1=J1ðTe1 � f1o1 � TL1Þ ð20Þ

We choose the sliding mode surface as:

s ¼ od � o1 ð21Þ

According to the theory of Super-Twisting sliding mode control, we design the mathemati-

cal form of the controlled object u1 as Eq (22) in order to reach the sliding-mode surface

quickly.

u1 ¼ Te1 ¼ l0jsj
1=2sgnðsÞ þ

Z t

0

b0sgnðsÞdt ð22Þ

Where, both λ0 and β0 represent gain, and λ0>0, β0>0.

By deriving Eq (21) once, we can get the following equation.

_s ¼ � l1jsj
1=2sgnðsÞ �

Z t

0

b1sgnðsÞdt þ u ð23Þ

Where, λ1 = λ0/J1, β1 = β0/J1, υ = (f1ω1−TL1)/J1.

Selecting ξ as the status variable, so ξ is as follows:

ξ ¼ ½
x1

x2

� ¼ ½

jsj1=2sgnðsÞ
Z t

0

b1sgnðsÞdt
� ð24Þ

According to Eq (24), derivative _ξ of the state variable ξ can be expressed as:

_ξ ¼ � jsj� 1=2
ðAξ � ρÞ ð25Þ

Fig 3. Model predictive torque control (MPTC).

https://doi.org/10.1371/journal.pone.0294726.g003

PLOS ONE Controlled synchronization with two motors based on improved sliding mode

PLOS ONE | https://doi.org/10.1371/journal.pone.0294726 November 21, 2023 8 / 20

https://doi.org/10.1371/journal.pone.0294726.g003
https://doi.org/10.1371/journal.pone.0294726


with

A ¼
l1=2 1=2

� b1 0

" #

; ρ ¼
u=2

0

" #

It is necessary to prove the stability of the ST-SMC controller, so the Lyapunov function is

designed as:

V ¼ ξTpξ ð26Þ

Because V>0, thus p needs to be a positive-definite matrix.

p ¼
l1

2=4þ 2b1 l1=4

l1=4 1

" #

ð27Þ

By deriving Eq (26) once, we can get the following equation.

_V ¼ � jsj� 1=2ξT
ðATpþ pAÞξþ jsj� 1=2

rTpξþ jsj� 1=2ξTpr ð28Þ

Selecting δ>0 and satisfied |υ/2|�δ|ξ1|, so Eq (28) can be rewritten as:

_V � � jsj� 1=2ξT
ðATpþ pAÞξþ jsj� 1=2ξT

d 0

0 0

2

4

3

5pξþ jsj� 1=2ξTp
d 0

0 0

2

4

3

5ξ

¼ � jsj� 1=2ξTNξ

ð29Þ

with

N ¼ ATpþ pA � p
d 0

0 0

2

4

3

5 �

d 0

0 0

2

4

3

5p

¼ l1=4

l1
2 þ 6b1 � 2dðl1 þ 8b1=l1Þ l1 � d

l1 � d 1

2

4

3

5

_V < 0 can keep the control system stable, thus it is necessary to satisfy that the matrix N is a positive-defi-

nite matrix. Considering the definition of a positive-definite matrix, thus the condition that N is a posi-

tive-definite matrix is as follows:

l1
2 þ 6b1 � 2dðl1 þ 8b1=l1Þ > 0

l1 > 0

b1 > 0

ð30Þ

8
><

>:

According to Eq (30), λ1 and β1 need to satisfy the following relationship.

l1 > 8d=3

b1 > l1d
2
=ð6l1 � 16dÞ

ð31Þ

(

The above calculations and analysis show that when λ1 and β1 meet the required conditions,

the controlled object Te1 is stable and the control system is asymptotically stable.
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The motor may be affected by disturbances during operation, so Eq (20) can be rewritten as

Eq (32) after the disturbance is applied.

_o1 ¼ 1=J1ðTe1 � f1o1 � TL1Þ þH ð32Þ

Where,H indicates perturbation, andH is bounded.

Similarly, Eq (23) can be rewritten as follows:

_s ¼ � l1jsj
1=2sgnðsÞ �

Z t

0

b1sgnðsÞdt þ u � H ð33Þ

Selecting δ>0 and satisfied |(υ−H)/2|�δ|ξ1|. Referring to the previous analysis, the control sys-

tem is asymptotically stable even with disturbances.

4.2 Controller of the slave motor

The last term in Eq (5) can be written as:

Âφ2 ¼ Te2=J2 � f2 _φ2=J2 � G ð34Þ

Where, G stands for an uncertain term, G = TL2/J2.

Since ER2 tracks the phase of ER1, thus the tracking error is defined as:

e ¼ φ
1
� φ

2
ð35Þ

Referring to the theory of backstepping control, we respectively define the stable function

z1 and Lyapunov function V1 as:

z1 ¼ ke ð36Þ

V1 ¼ e
2=2 ð37Þ

Where, k>0.

Then, let’s define the dummy quantity z2 as:

z2 ¼ _φ1 þ ke ð38Þ

According to Eq (38), the error e1 of z2 can be calculated as:

e1 ¼ z2 � _φ2 ¼ _φ1 þ ke � _φ2 ð39Þ

Then Eq (37) is written as Eq (40) by deriving.

_V 1 ¼ ee1 � ke
2 ð40Þ

It is known from Eq (40) that if e1 = 0, then the backstepping system is stable.

Considering the effect of the integral term in generalized sliding mode surface, we design

the complementary sliding surface which is orthogonal to the generalized sliding mode sur-

face. This is more effective in reducing the tracking error.
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We respectively design the generalized sliding mode surface sa and complementary sliding

mode surface sb as:

sa ¼ e1 þ w2

Z t

0

e1ðtÞdt

sb ¼ e1 � w2

Z t

0

e1ðtÞdt
ð41Þ

Where, χ2 is the sliding mode constant.

Combining the two terms in Eq (41), we can obtain sc and _sc

sc ¼ sa þ sb ¼ 2e1

_sc ¼ 2½ _z2 � ðTe2=J2 � f2 _φ2=J2 � GÞ�
ð42Þ

We design the Lyapunov function V2 as:

V2 ¼ ε0ðsa þ sbÞ
2
=2þ ð_sa þ _sbÞ

2
=2þ r0jsa þ sbj ð43Þ

Where, ε0>0, ρ0 indicates the maximum value of uncertain term G, ρ0�|G|.

By deriving Eq (43) once, we can get the following equation.

_V 2 ¼ ð_sa þ _sbÞ½ε0ðsa þ sbÞ þ ðÂsa þÂsbÞ þ r0sgnðsa þ sbÞ� ð44Þ

DefiningÂsa þÂsb as:

Âsa þÂsb ¼ � ε0ðsa þ sbÞ � k1ð_sa þ _sbÞ � r0sgnðsa þ sbÞ� ð45Þ

Where, k1>0.

The stability of the system is related to whether Eq (45) is satisfied. If Eq (45) is satisfied,

thus _V 2 � 0 and the system is stable.

Combining Eq (45) with Eq (44), we design the mathematical form of the controlled object

u2 as Eq (46).

u2 ¼ Te2 ¼ J2ð _z2 þ f2 _φ2=J2 � �r0Þ þ 2J2

Z t

0

½ε0ðsa þ sbÞ þ k1ð_sa þ _sbÞ þ �r0sgnðsa þ sbÞ�dt ð46Þ

Where, �r0 is estimated from ρ0.

To ensure that the solution of Eq (45) is asymptotically stable, thus sc(n) = 0 in finite time.

We can rewrite Eq (45) as:

Âsa þÂsb ¼ � ε0ðsa þ sbÞ � r0sgnðsa þ sbÞ� ð47Þ

When Eq (48) is satisfied,Âsc � 0.

sa þ sb � � ε0
� 1r0sgnðsa þ sbÞ ð48Þ

In summary we can know that sc and _sc will become zero in finite time. According to Eq

(42), the error e1 of z2 will also become zero in finite time. Eq (40) is rewritten as:

_V 1 ¼ � ke
2 � 0 ð49Þ

Since _V 1 � 0, thus V1(e,0)�V1(e,t), e is bounded.
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The integral of Eq (49) can be described as:

lim
t!1

Z t

0

ðke2Þdt � V1ðe; 0Þ � V1ðe;1Þ ¼ 1 ð50Þ

Referring to Barbalat Lemma [23] and Eq (50), we can obtain the Eq (51).

lim
t!1

eðtÞ ¼ 0 ð51Þ

Therefore, the control system is stable.

�r0 is estimated by ARBFNN. The structure of the neural network is chosen as 2-5-1, and

the RBFNN algorithm is as follows [24, 25]:

hj ¼ gðkx � cijk
2
=bj2Þ

¼ expð� kx � cijk
2
=bj2Þ

f ¼WThðxÞ þ εa

ð52Þ

Where, hj is a Gaussian function. g denotes the Gaussian activation function. x is the input of

the RBFNN. i is the number of inputs. j stands for implied layer node. bj is the width of Gauss-

ian function. h denotes the output of the Gaussian function, h ¼ ½ h1 h2 � � � hj �
T
. W is the

weight of the RBFNN. εa indicates the estimation error.

The input of RBFNN is defined as x ¼ ½ e _e �T, then the output can be obtained as:

�r0 ¼ ŴThðxÞ ð53Þ

In Eq (53), Ŵ is the estimation of W. Ŵ is obtained by the following equation.

_̂W ¼ � gETPBhðxÞ ð54Þ

Where, γ>0, E ¼ ½ e _e �T, B ¼ ½ 0 1 �
T
. P denotes a positive definite matrix.

5. Characterization and simulation

The parameters of two motors and vibration system are shown in Tables 1 and 2.

Table 1. Parameters of motors.

Parameters Motor 1 Motor 2

Power Rating P/kW 1 1

Number of polar pairs np 3 3

Frequency rating f0/Hz 50 50

Rated speed n/(r/min) 950 950

Stator resistance Rs/O 5.75 5.4

Rotor resistance Rr/O 5.4 5.3

Stator inductor Ls/H 0.170 0.179

Rotor inductor Lr/H 0.170 0.179

Coefficient of mutual inductance Lm/H 0.115 0.125

Given magnetic chain �
∗
s /Wb 0.8 0.8

Friction coefficient f1,2/(N�s�m/rad) 0.005 0.005

https://doi.org/10.1371/journal.pone.0294726.t001
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5.1 Characterization of synchronization conditions and stability

conditions

The theory of synchronization and stability conditions has been derived in Eq (15) and Eq (19)

in section 2, we continue to analyze its numerical aspects. In Fig 4, we can see that (a) repre-

sents the relationship between the phase error and the electromagnetic torque of the two

motors. Although different phase errors result in different electromagnetic torque output from

motors, but the electromagnetic torque is still less than the rated electromagnetic torque. The

electromagnetic torque of motor 1 and motor 2 increase as the target speed increases. (b) indi-

cates the effect of θ1 and θ2 on the electromagnetic torque with other parameters unchanged.

We can see that the electromagnetic torques become larger after increasing the position angle,

the phase errors corresponding to the highest point of the curve and the lowest point of the

curve are different. In (c), the effect of the change in rl on the electromagnetic torque is the

same as in (a), the electromagnetic torque is also still less than the rated electromagnetic tor-

que. The four curves show a pattern that their torques are equal at 60˚ and 240˚. (d), (e) and (f)

show the stability conditions of the synchronous motion. Because of d2>0, d3>0,d1d2>d3, so

we can get the stable region of phase error when the speed is 60 rad/s and 80 rad/s by (d).

From (d), the stable region is (75˚~254˚) and doesn’t change much at different speeds. When

we change the parameter η, only d2 and d1d2−d3 are affected, and this phenomenon can be

seen in (e). (f) shows the effect of changing the position angle on the stability conditions. As

the position angle increases, the curves shift to the left overall, which indicates that the stable

region has changed.

The purpose of controlled synchronization is to achieve φ1−φ2 = 0, therefore, we analyze

the relationship between r1 and d on the basis of φ1−φ2 = 0. First we set the position angle to 0˚

and 180˚, it is obvious from Fig 5(A) that d2>0, d3>0 and d1d2−d3>0 are only satisfied when

rl >
ffiffiffi
2
p

. After the position angle is increased, we can see from (b), (c)and (d) that d2>0, d3>0

and d1d2−d3>0 cannot be satisfied simultaneously despite increasing rl. Therefore, the self-

synchronous motion to achieve φ1−φ2 = 0 requires the position angle to be 0 and rl >
ffiffiffi
2
p

to

be satisfied. (e), (f) denote the effect of η on aij(i,j = 1,2) and bij(i,j = 1,2), we can know that the

stable capacity of the vibrating system is strongest at η = 1.

Table 2. Parameters of the vibration system.

Parameters Value

The quality of the shaking table and motorsm/kg 242

The rotational inertia of the shaking table JP/(kg�m2) 43.5

The spring stiffness in x direction kx/(N/m) 129322

The spring stiffness in y direction ky/(N/m) 105334

The spring stiffness in ψ direction kψ/(N�m/rad) 30715

The damping coefficients in x direction fx/(N�s/m) 615.5

The damping coefficients in y direction fy/(N�s/m) 618

The damping coefficients in ψ direction fψ/(N�s�m/rad) 180.2

The distance between o and o1 l1/m 0.3

The distance between o and o2 l2/m 0.3

The position angles of ER1 θ1/ (˚) 30

The position angles of ER2 θ2/ (˚) 150

The quality of ERsm1/kg 4

Rotational radius of ERs r/m 0.05

https://doi.org/10.1371/journal.pone.0294726.t002
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5.2 Self-synchronous simulation

The limitations of the self-synchronization have been described in the previous section, so this

section simulates the self-synchronization to further illustrate the need for the control method.

The results of simulation are shown in Fig 6.

(a) reflects the speed of motor 1 and motor 2. We can see that at the beginning of the simu-

lation, both motor 1 and motor 2 can quickly reach the target speed of 60 rad/s and stabilize

around 60 rad/s. (b) is the phase error between the ERs. From (b), we can obtain that the phase

error stabilizes around 165˚ after 10 s and does not achieve φ1−φ2 = 0, This phenomenon

shows that the two motors are synchronized only in speed, not in phase error to zero. (c) and

(d) are the responses of the vibrating system in three directions. The displacement response in

x, y directions are stable with time between -0.2 mm and 0.2 mm, the ψ direction shows a

small oscillation. As shown in (e), the trajectory of the shaking table at the steady state of

15~20 s is a small ellipse, which indicates that the amplitude of the body is stable but the ampli-

tude is small. Simulation shows that the vibration system realizes the self-synchronous motion

with equal speed but non-zero phase error. In practice, the vibrating screen driven by two

motors will appear the phenomenon that the body amplitude is too small, which will lead to

poor screening effect, and is not conducive to screening and conveying materials.

5.3 Controlled synchronous simulation

The controllers for the two motors have been designed in section 4, then we use simulation to

verify the effectiveness of the control method. The results of simulation for controlled synchro-

nization are shown in Fig 7.

Fig 4. Characterization of synchronization conditions and stability conditions. (a) Synchronization conditions at different speeds. (b) Effect of θ on

synchronization conditions. (c) Effect of r1 on synchronization conditions. (d) Stabilized areas at different speeds. (e) Effect of η on stabilized areas. (f) Effect of

θ on stabilized areas.

https://doi.org/10.1371/journal.pone.0294726.g004
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(a) shows the speed curves of the two motors based on AR-BSOCSMC and MPTC. From

(a), we can see that both motors reach the target speed of 60 rad/s, while the speed fluctuation

range of motor 2 is ±0.06 rad/s, which is much smaller than the self-synchronous fluctuation.

(b) indicates the speed error curves of motor 1 and motor 2. The maximum value of the speed

error is 5 rad/s, which indicates that the maximum speed overshoot of motor 2 is 5 rad/s and

the speed tracking error of the two motors is less than 0.05. In (c), the maximum value of

phase error between ER1and ER2 is 60˚, then motor 2 quickly tracks the phase of motor 1 and

achieves the state of zero phase error at 1 s. The phenomenon indicates that the ERs have

achieved synchronous motion with double synchronization of speed and phase. (d) and (e) are

the responses of the vibrating system in three directions, and their response values are affected

by phase synchronization. When the system reaches a synchronized state with zero phase

error, the vibration displacement is stable between -2 mm and 2 mm in x and y directions,

thus the motion trajectory of the shaking table is elliptical as shown in (h). Compared (h) with

Fig 6(E), it can be known that the state of zero phase error can make the amplitude of the shak-

ing table increase greatly, and the application to the vibrating screen can significantly improve

the efficiency and process effect. (f) and (g) respectively indicate the load torque and electro-

magnetic torque of the two motors, the relationship between load torque and electromagnetic

torque meets the requirements for achieving synchronous motion. The value of the electro-

magnetic torque when the phase error is zero is consistent with the analysis in Fig 4(A). Simu-

lation results can show that the control methods and control strategy designed in this paper

can realize the synchronous motion with equal speed and zero phase error. Applying them to

the vibrating screen can increase the amplitude and improve the screening efficiency to meet

higher process requirements.

Fig 5. Effect of rl on parameters aij(i,j = 1,2), bij(i,j = 1,2) and stability conditions for zero phase error. (a) Stability conditions at (θ1,θ2) = (0˚,180˚). (b)

Stability conditions at (θ1,θ2) = (30˚,150˚). (c) Stability conditions at (θ1,θ2) = (45˚,135˚). (d) Stability conditions at (θ1,θ2) = (60˚,120˚). (e) Effect of rl on

parameters aij(i,j = 1,2). (f) Effect of rl on parameters bij(i,j = 1,2).

https://doi.org/10.1371/journal.pone.0294726.g005
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5.4 Comparison of different methods and robustness analysis

The control methods designed in this paper have been verified in terms of effectiveness, so we

continue to analyze the advanced and robustness of controllers by means of methods compari-

son. The results of simulation are shown in Fig 8.

For motor 1, we compared the ST-SMC controller with a conventional PI controller and an

adaptive backstepping sliding mode controller (ABSMC) in simulation. From (a), we can see

that the three control methods show the same effect on the whole. However, the ST-SMC is

more responsive during the start-up phase of the motor, and the speed tracking error

Fig 6. Results of self-synchronous simulation. (a) Speed of two motors. (b) Phase tracking error. (c) Response in x, y
directions. (d) Response in ψ direction. (e) The trajectory of the body.

https://doi.org/10.1371/journal.pone.0294726.g006
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represented in (b) is similarly minimized. In (c), the ST-SMC minimizes fluctuations in the

electromagnetic torque of motor 1 compared to other controllers. The above phenomena can

show that the controller designed for motor 1 in the paper is significantly advanced. (d) shows

the phase tracking curve for ERs, AR-BSOCSMC shows good tracking performance compared

to adaptive BSOCSMC (ABSOCSMC), global CSMC (GCSMC), and so on. With AR-B-

SOCSMC, the maximum value of phase error of the two motors is 60˚, which is the smallest

among the comparative control methods. In addition, AR-BSOCSMC has the smallest phase

Fig 7. Results of controlled synchronization simulation. (a) Speed of two motors. (b) Speed tracking error. (c) Phase tracking error. (d) Response in x, y
directions. (e) Response in ψ direction. (f) Load of motor 1 and motor 2. (g) Electromagnetic torque of two motors. (h) The trajectory of the body.

https://doi.org/10.1371/journal.pone.0294726.g007

Fig 8. Comparison and analysis of multiple control methods. (a) Speed of motor 1. (b) Speed tracking error. (c) Electromagnetic torque of motor 1of motor

1. (d) Phase tracking error. (e) Speed of motor 2. (f) Speed tracking error of motor 2. (g) Speed of motor 2 under perturbation. (h) Phase tracking error under

perturbation.

https://doi.org/10.1371/journal.pone.0294726.g008
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tracking error. The speed of motor 2 is able to track the speed of motor 1 well under the con-

trol of different controllers, but the AR-BSOCSMC brings the best results in terms of tracking

error and weakening of chattering, which can be obtained from (e), (f). At the simulation time

of 4 s, we disconnect the controller, forcing the vibration system to self-synchronize, and

resume the controlled synchronization at 5 s. This time period can be regarded as the vibrating

system is subjected to external disturbance. From (g), the speed fluctuation with AR-B-

SOCSMC after applying the perturbation is the smallest and the regulation time is shorter

than others. In (h), The fluctuation in phase error for AR-BSOCSMC is about 3˚, while other

control methods are much larger than 3˚. In addition, when the vibration system resumes con-

trolled synchronization, the phase overshoot with AR-BSOCSMC is very small and the phase

error returns to zero in a short time. By analyzing (g), (h), it is known that AR-BSOCSMC has

strong robustness. Above analysis leads to the conclusion that the control method designed in

this paper is significantly advanced and robust.

6. Conclusions

This paper investigates that the controlled synchronization method can be applied to realize

the miniaturization of the vibrating screens. And the results indicate that the control strategy

and control method proposed in this paper are effective, and have higher control accuracy and

better robustness compared with other control methods. According to the dynamics model

and based on the small parameter method, we obtained the synchronization conditions and

the stability conditions of the vibrating screen driven by two motors. In order to verify the cor-

rectness of the theoretical derivation, the synchronization and stability conditions were

numerically analyzed and visualized, and it is concluded that the condition of self-synchroni-

zation to achieve zero phase error is rl >
ffiffiffi
2
p

. We respectively designed ST-SMC controller

and AR-BSOCSMC controller for motor 1 and motor 2, and analyzed the Lyapunov stability.

The simulation indicates that the controlled synchronization can make the phase error become

zero. The total excitation force of the vibration system is the sum of the excitation force gener-

ated by the ER1 and the excitation force generated by the ER2. In this case, the displacement of

the shaker in the x and y directions increase significantly, and its motion trajectory is elliptical.

The screening efficiency of the vibrating screen reaches a more ideal state. In addition, we

demonstrate that the controllers designed in this paper are better in terms of robustness, weak-

ening of chattering, and control accuracy by comparative simulation with other controllers.
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