
RESEARCH ARTICLE

A discussion on significance indices for

contingency tables under small sample sizes

Natalia L. Oliveira1☯, Carlos A. de B. Pereira2☯, Marcio A. Diniz3☯, Adriano Polpo3☯*

1 Department of Statistics and Data Science, Carnegie Mellon Univesity, Pittsburgh, United States of

America, 2 Department of Statistics, University of Sao Paulo, Sao Paulo, Brazil, 3 Department of Statistics,

Federal University of Sao Carlos, Sao Carlos, Brazil

☯ These authors contributed equally to this work.

* polpo@ufscar.br

Abstract

Hypothesis testing in contingency tables is usually based on asymptotic results, thereby

restricting its proper use to large samples. To study these tests in small samples, we

consider the likelihood ratio test (LRT) and define an accurate index for the celebrated

hypotheses of homogeneity, independence, and Hardy-Weinberg equilibrium. The aim is to

understand the use of the asymptotic results of the frequentist Likelihood Ratio Test and the

Bayesian FBST (Full Bayesian Significance Test) under small-sample scenarios. The pro-

posed exact LRT p-value is used as a benchmark to understand the other indices. We per-

form analysis in different scenarios, considering different sample sizes and different table

dimensions. The conditional Fisher’s exact test for 2 × 2 tables and the Barnard’s exact test

are also discussed. The main message of this paper is that all indices have very similar

behavior, except for Fisher and Barnard tests that has a discrete behavior. The most power-

ful test was the asymptotic p-value from the likelihood ratio test, suggesting that is a good

alternative for small sample sizes.

Introduction

We discuss indices for homogeneity, independence, and Hardy-Weinberg equilibrium

hypotheses [1, 2] in contingency tables. We propose an exact evaluation of the Likelihood

Ratio Test (LRT) as a benchmark significance index. Based on the work of [3], its idea is to

evaluate the probability distribution of all possible tables on the sample space under the null

hypothesis. Once the distribution for sampling contingency tables under the hypothesis is

known, we are able to compute the exact distribution of the Likelihood Ratio Test (LRT) statis-

tics. The main difficulty for this procedure is that it is computationally time-consuming, being

only feasible for small sample sizes and/or for tables of small dimension.

The exact LRT p-value presented as a way to do exact inference. The aim is to compare the

behavior of the frequentist LRT asymptotic p-value [4], the exact LRT p-value, the Fisher’s

exact test p-value [5], the Chi-Square test asymptotic p-value [6, 7] and the Barnard’s exact test

p-value [8–11]. These frequentist indices are also compared to the e-value from the Full Bayes-

ian Significance Test (FBST) [12, 13]. It was considered the asymptotic e-value and its
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approximation (based on a Markov Chain Monte Carlo procedure) of the exact e-value. The

choice of adding a Bayesian index to the comparison study originates from the known asymp-

totic relationship between the LRT and the FBST [14]. Moreover, the FBST and its e-value can

be viewed as a Bayesian p-value counterpart, and therefore it is interesting to understand this

Bayesian method when compared to frequentist methods. It is important to point out that we

are mainly interested in the values of the indices, not in the acceptance or rejection of the

hypothesis; that is, our focus is on the significance test, which consists of the evaluation of the

p-(e-)values. In an applied setting, the researcher can, based on the indices, make his/her deci-

sion about his/her application. We are not interested in comparing the values of the indices

with some fixed significance value (generally 5%) to decide the if the hypothesis should be

accepted or rejected. With this goal in mind, all significance indices considered here are in

agreement with the ASA’s statement on significance indices [15].

From a historical perspective, hypothesis testing has been the most widely used statistical

tool in many fields of science [16–18]. For categorical data, [19] discusses some exact proce-

dures to perform inference and [20] presents methodological procedures for hypothesis testing

for contingency tables. Tests for homogeneity hypothesis in contingency tables have been

compared by [21], who compared the conditional and unconditional, and by [22], who com-

pares, under an asymptotic perspective, two tests for equality of two proportions considering

Goodman’s Y2 and χ2 statistics. Regarding tests for the independence of two classifiers in con-

tingency tables, [23] presents an algorithm for finding the exact permutation significance level

for r × c contingency tables. [24], studies a simple way to compare two correlated proportions.

More recently, [25] presents the exact likelihood ratio test for equality of two normal popula-

tions, and [26] discuss exact unconditional tests for homogeneity hypothesis in 2 × 2 tables.

One important aspect that differentiates the tests procedures is how each one deals with the

elimination of the nuisance parameter. Basu [27] lists several methods but focuses on margin-

alization and conditioning. He defines marginalization as every procedure that replaces the

observed sample x by the observed value of a suitable statistic T(x) = t. Therefore, instead of

working with the original experiment E and data x, one should use the marginal experiment

ET and the recorded value T(x) since the marginal statistical model would depend only on the

parameter of interest. To justify these procedures, Basu adds that researchers usually recur to

invariance or partial sufficiency arguments.

By conditioning, Basu defines methods of elimination that also consist of choosing a suit-

able statistic, but such that the conditional distribution of the observed sample, x, given the

observed value of the statistic depends on the full parameter space only through the parameter

of interest. Another commonly used approach that Basu describes is the one he calls maximi-
zation. In this case the nuisance parameter is eliminated from the risk function by some sort

of maximization (or minimax) principle or directly from the likelihood, usually maximizing it

with respect the nuisance parameters.

A final important strategy mentioned by Basu is the one he called Bayesian solution. In this

case, one should derive the full posterior and integrate out the nuisance parameters, obtaining

the posterior marginal distribution necessary to perform the required statistical inference. It is

important to point out that the FBST does not follow this Bayesian strategy, since its evidence

value is computed considering the full posterior. The proposed exact LRT p-value is based on

the idea of integrating out the nuisance parameter, which is in some way related to Basu’s

Bayesian solution [26]. The methods for elimination of nuisance parameters, maximization
and Bayesian solution can be considered as unconditional methods.

The Likelihood Ratio Test (LRT) asymptotic p-value [28], the Chi-Square test asymptotic

p-value [29], Fisher’s homogeneity exact test [29, 30], Barnard’s exact test [8], and the Full

Bayesian Significance Test (FBST) asymptotic and exact e-value [12, 13] are presented in detail
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for the case of 2 × 2 contingency tables considering homogeneity hypothesis (Section 1.1). The

theoretical results for homogeneity and independence hypotheses for tables of any dimension

and Hardy-Weinberg equilibrium hypothesis are presented in sections 1.2, 1.3 and 1.4.

We study the relationship between indices in Section 2.1. [14] perform a similar study, how-

ever they consider continuous random variables using the e-value and the LRT p-value and

show that these indices share an asymptotic relationship. In our case, the asymptotic LRT p-

value, the exact LRT p-value and the Chi-Square p-value have similar behavior, including in

small sample size scenarios. Both Fisher’s exact test and Barnard’s exact test have a discrete

behavior for their p-values, being more clear for the Barnard’s exact test p-value. All tests are

unconditional tests, except for the Fisher one, that is a conditional test. It is important to draw

attention to the fact that the present results are not based on a simulation study, we compute

the indices for all possible tables in the sample space.

In addition to our focus on the study of significance indices, we also provide, for the fre-

quentist indices, a study of the power functions to compare the tests considering the homoge-

neity hypothesis (2 × 2 tables) and Hardy-Weinberg equilibrium hypothesis (Section 2.2). The

Fisher’s exact test was the least powerful, followed by the Barnard’s exact test, Chi-Square test,

the exact LRT and the asymptotic LRT, the most powerful one. We did not evaluate the power

function for the FBST; firstly, because it is not the aim of the Bayesian paradigm, and secondly,

to do so, it would be necessary to define a decision rule for the FBST, which is not in the scope

of this paper. We also note that, under the hull hypothesis, considering the significance level

5%, all frequentist indices achieved 5% rejection as expected.

1 Methods

1.1 Homogeneity test for 2 × 2 contingency tables

Let X1 and X2 be two random variables, representing the rows (1 and 2) of Table 1, x11 and x21

being their observed values, and n1� and n2� fixed sample sizes. Consider the distributions of X1

as Binomial(n1�, θ11) and X2 a Binomial(n2�, θ21) for describing the chances of a subject belong

to category (column) C1 in two distinct populations. Both populations are partitioned into

two categories (columns) C1 and C2 and the objective is to test homogeneity among the two

unknown population frequencies, H: θ11 = θ21 = θ. This hypothesis is geometrically repre-

sented by a diagonal line of the unit square.

The likelihood function is specified by

Lðy11; y21 j x11; x21; n1�; n2�Þ ¼
n1�!n2�!

x11!x21!x12!x22!
y
x11

11
y
x21

21
ð1 � y11Þ

x12ð1 � y21Þ
x22 ; ð1Þ

where 0� θi1� 1, i = 1, 2. Under H, the likelihood function simplifies to

Lðy j x11; x21; n1�; n2�;HÞ ¼
n1�!n2�!

x11!x21!x12!x22!
y
x11þx21ð1 � yÞ

x12þx22 ; 0 � y � 1; ð2Þ

Table 1. Contingency table 2 × 2.

row\column 1 2 total

1 x11 x12 n1�

2 x21 x22 n2�

ni� = xi1 + xi2, i = 1, 2.

https://doi.org/10.1371/journal.pone.0199102.t001
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and the LRT test statistics is:

lðx11; x21Þ ¼

sup
y2YH

Lðy11; y21jx11; x21; n1�; n2�Þ

sup
y2Y

Lðy11; y21jx11; x21; n1�; n2�Þ

¼
ð

x11þx21

n1�þn2�
Þ
x11þx21ð

x12þx22

n1�þn2�
Þ
x12þx22

x11

n1�

� �x11 x12

n1�

� �x12 x21

n2�

� �x21 x22

n2�

� �x22
;

ð3Þ

in which ΘH is the parametric set defined by the hypothesis.

• Exact LRT p-value:

To define this p-value, we use the predictive distributions of X1 and X2 before any data were

observed. The proposed p-value is an alternative way to calculate an exact p-value for the LRT.

The goal is to find a distribution for the contingency table under H that is not a function on θ.

We consider θ a nuisance parameter in the likelihood function in (2) and integrate it over θ in

order to eliminate it, as suggested by [27]. The idea is to incorporate the concept of the Bayes-
ian solution nuisance parameter elimination approach but in a frequentist setting, which

means using the likelihood function instead of a posterior distribution. That is,

hðx11; x21Þ ¼

Z 1

0

Lðyjx11; x21; n1�; n2�;HÞdy

¼
n1�!n2�!

x11!x21!x12!x22!

Z 1

0

y
x11þx21ð1 � yÞ

x12þx22 dy

¼
n1�

x11

 !
n2�

x21

 !
ðx11 þ x21Þ!ðx12 þ x22Þ!

ðn1� þ n2� þ 1Þ!

¼
ð
n1�

x11
Þð

n2�

x21
Þ

ð
n1�þn2�

x11þx21
Þ

1

ðn1� þ n2� þ 1Þ
:

ð4Þ

To obtain the probability function Pr(X1 = x11, X2 = x21 jH), one needs to find a normaliza-

tion constant.

PrðX1 ¼ x11;X2 ¼ x21 j HÞ ¼
hðx11; x21Þ

Xn1�

i¼0

Xn2�

j¼0

hði; jÞ
:

ð5Þ

Note that to calculate (5), we evaluate h(�, �) for all possible tables. In the case of a homogeneity

hypothesis for 2 × 2 contingency tables,
Xn1�

i¼0

Xn2�

j¼0

hði; jÞ ¼ 1. We present the table’s probability

in terms of this sum to obtain a general formula for all hypotheses and table dimensions con-

sidered here, since in other scenarios this quantity does not sum up to 1 (for example, the sum

of h for all possible 2 × 2 tables considering independence hypothesis with n = 2 is 2304). The

exact p-value calculation follows directly from the test statistic distribution:

p‐value ¼ PrðlðX1;X2Þ � lðx11; x21Þ j HÞ

¼
X

ði;jÞ2R

PrðX1 ¼ i;X2 ¼ j j HÞ; ð6Þ
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in which R is the set of all pairs (i, j) such that λ(i, j)� λ(x11, x21), and λ(x11, x21) is the observed

test statistic, as in (3).

• Barnard’s Exact Test:

Consider that n1� and n2� are fixed in Table 1. The random variables X1 and X2 are indepen-

dent Binomial distribution with parameters θ11 and θ21. The probability of a sample {x11, x21}

be drawn is

PrðX1 ¼ x11;X2 ¼ x21Þ ¼
n1�!

x11!x12!
y
x11

11
ð1 � y11Þ

x12
n2�!

x21!x22!
y
x21

21
ð1 � y21Þ

x22 ; ð7Þ

and, under hypothesis H,

PrðX1 ¼ x11;X2 ¼ x21 j HÞ ¼
n1�!n2�!

x11!x12!x21!x22!
y
x11þx12ð1 � yÞ

x12þx22 : ð8Þ

We define the critical region as R = {λ(X1, X2)� λ(x11, x21)}, then the Barnard’s exact p-

value is obtained by

p‐value ¼ max
0�y�1

X

R

n1�!n2�!

x11!x12!x21!x22!
y
x11þx12ð1 � yÞ

x12þx22 : ð9Þ

That is, the Barnard’s exact test consider the p-values for all possible points of the parameter

space under H, and takes the maximum p-value. In this test, the chosen approach for nuisance

parameter elimination among the ones presented by Basu is maximization.

• Full Bayesian Significance Test:

The Bayesian approach considered is based on the FBST (Full Bayesian Significance Test)

[12, 13].

Definition 1 Let π(θ j x) be the posterior density function of θ given the observed sample and
TðxÞ ¼ fy 2 Y : pðy j xÞ � supy2YH

pðy j xÞg. The supporting evidence measure for the hypoth-
esis θ 2 ΘH is defined as Ev(ΘH, x) = 1 − Pr(θ 2 T(x) j x).

Consider that, a priori, θ11 and θ21 are independent and both follow a Uniform(0, 1)

distribution. The choice of uniforms priors is to avoid a subjective prior to have a fair

comparison with frequentist indices. Recall that X1 and X2 given θ11 and θ21 are Binomial

distributed. Hence, the posterior distributions for θ11 and θ21 are independent Beta(x11 + 1,

n1� − x11 + 1) and Beta(x21 + 1, n2� − x21 + 1). Under the hypothesis H, the posterior distribu-

tion is

pðy j x11; x21; n1�; n2�;HÞ ¼
y
x11þx21ð1 � yÞ

x12þx22

Bðx11 þ 1; x12 þ 1ÞBðx21 þ 1; x22 þ 1Þ
ð10Þ

and by maximizing it in θ we obtain supθ2(0,1) π(θ j x11, x21, n1�, n2�, H), where ℬð�; �Þ is the
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Beta function. Since x11, x21, n1� and n2� are integers,

pðy j x11; x21; n1�; n2�;HÞ ¼
n1�

x11

 !
n2�

x21

 !

ðn1� þ 1Þðn2� þ 1Þy
x11þx21ð1 � yÞ

x12þx22 ;
ð11Þ

sup
y2ð0;1Þ

pðy j x11; x21; n1�; n2�;HÞ ¼

ðn1� þ 1Þ!ðn2� þ 1Þ!

x11!x21!x12!x22!

x11 þ x21

n1� þ n2�

� �x11þx21 x12 þ x22

n1� þ n2�

� �x12þx22

;

ð12Þ

the hypothesis’ tangent set, T, is

Tðx11; x21; n1�; n2�Þ ¼

�

ðy11; y21Þ 2 ð0; 1Þ � ð0; 1Þ :

pðy11; y21 j x11; x21; n1�; n2�Þ � sup
y2ð0;1Þ

pðy j x11; x21; n1�; n2�;HÞ
�

;

ð13Þ

and

e‐value ¼ 1 � Pr½y 2 Tðx11; x21; n1�; n2�Þ�: ð14Þ

To calculate the approximate e-value, we use the following algorithm:

1. A random sample of size k is generated from posterior distribution of θ11, θ21, obtaining

fyx111; yx211g; . . . ; fyx11k
; yx21k

g.

2. The e-value is calculated by

1 �
1

k

Xk

i¼1

I pðyx11i
; yx21i

j x11; x21; n1�; n2�Þ � sup
y2ð0;1Þ

pðy j x11; x21; n1�; n2�Þ

 !

;

in which I(A) is the indicator function of set A.

• Other indices:

For the LRT, the statistic −2 ln[λ(X1, X2)] has asymptotically a chi-square distribution with

1 degree of freedom, which is dim(Θ) − dim(ΘH) [28]. The FBST uses the same statistic, how-

ever its asymptotic distribution is a chi-square with 2 degrees of freedom [13], which is dim
(Θ). For the chi-square test and the Fisher’s exact test for homogeneity see [29].

1.2 Homogeneity hypothesis for ℓ × c contingency tables

Let Xi, i = 1, . . ., ℓ, be random variables that are represented by the rows of Table 2 and n1�,

n2�, . . ., nℓ� are known constants.

Assuming that Xi, i = 1, . . ., ℓ, follows a Multinomial(ni�, θi1, . . ., θic) distribution, we are

interested in testing if their distributions are homogeneous with respect to categories
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(columns) Cj, j = 1, . . ., c. That is,

H :

y1 ¼ y11 ¼ y21 ¼ � � � ¼ y‘1;

y2 ¼ y12 ¼ y22 ¼ � � � ¼ y‘2;

..

.

yc� 1 ¼ y1ðc� 1Þ ¼ y2ðc� 1Þ ¼ � � � ¼ y‘ðc� 1Þ;

8
>>>>>>>><

>>>>>>>>:

in which yc ¼ 1 �
Pc� 1

k¼1
yk, 0� θk� 1, 8k = 1, . . ., c.

Let x be all observed values presented in Table 2 and θ all the parameters. The likelihood

function is

Lðθ j xÞ ¼
Y‘

i¼1

ni�!

�
Y‘

i¼1

Yc

j¼1

xij!

" #
Y‘

i¼1

Yc

j¼1

y
xij
ij ; ð15Þ

and under the hypothesis H,

Lðθ j x;HÞ ¼
Y‘

i¼1

ni�!

�
Y‘

i¼1

Yc

j¼1

xij!

" #
Yc

j¼1

y
n�j
j : ð16Þ

The LRT λ statistic is

lðxÞ ¼
Yc

j¼1

n�j
n��

� �n�j�Y‘

i¼1

Yc

j¼1

xij

ni�

� �xij

: ð17Þ

• Exact LRT p-value:

To obtain the exact LRT p-value, we need the function h(x). In this scenario,

hðxÞ ¼
Y‘

i¼1

ni�!
Yc

j¼1

n�j!
�

Y‘

i¼1

Yc

j¼1

xij!

 !

ðn�� þ c � 1Þ!

" #

; ð18Þ

and the p-value’s calculation follows as in Subsection 1.1.

Table 2. Contingency table ℓ × c.

row\column 1 2 � � � c total

1 x11 x12 x1c n1�

2 x21 x22 x2c n2�

..

. . .
. ..

. ..
.

ℓ xℓ1 xℓ2 � � � xℓc nℓ�
total n�1 n�2 � � � n�c n��

ni� ¼
Pc

j¼1
xij, i = 1, . . ., ℓ;

n�j ¼
P‘

i¼1
xij, j = 1, . . ., c; and

n�� ¼
P‘

i¼1

Pc
j¼1

xij.

https://doi.org/10.1371/journal.pone.0199102.t002
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• FBST:

Assuming a Dirichlet(1, 1, . . ., 1) prior for {θi1, . . ., θic}, and since Xi follows a Multinomial

(ni, θi1, . . ., θic) distribution, then the posterior distribution is a Dirichlet(xi1 + 1, xi2 + 1, . . .,

xic + 1), i = 1, . . ., ℓ.

In this setting,

sup
θ2YH

pðθ j xÞ ¼
Y‘

i¼1

ðni� þ c � 1Þ!
Yc

j¼1

n�j
n��

� �n�j�Y‘

i¼1

Yc

j¼1

xij!; ð19Þ

and we can obtain the e-value from Definition 1.

• Other indices:

Both asymptotic LRT p-value and asymptotic e-value are calculated as Pr[−2 ln(λ(X))�

−2 ln(λ(x))], but while the LRT considers that this statistic follows a X2 distribution with

(ℓ − 1)(c − 1) degrees of freedom, the FBST considers that it follows a X2 distribution with

ℓ(c − 1) degrees of freedom. The Chi-Square homogeneity test is also obtained.

1.3 Independence hypothesis for ℓ × c contingency tables

Consider that θij is the probability of observing a sample in the cell at row i and column j, θi� is
the probability of observing a sample in row i, θ�j is the probability of observing a sample in

column j, 0� θij� 1, 0� θi� � 1, 0� θ�j� 1, i = 1, . . ., ℓ, j = 1, . . ., c,
P‘

i¼1

Pc
j¼1

yij ¼ 1,
P‘

i¼1
yi� ¼ 1, and

Pc
j¼1

y�j ¼ 1.

For the independence hypothesis, our interest is to test H: θij = θi� × θ�j, 8i, j. For the case of

2 × 2 table, the independence hypothesis is geometrically represented as Fig 1.

Considering that n�� is known, we assume that the outcomes of Table 2 follow a Multino-

mial(n.., θ) distribution, θ = {θ11, . . ., θ1(c−1), . . ., θℓ1, . . ., θℓ(c−1)}, and yic ¼ 1 �
Pc� 1

j¼1
yij, i =

1, . . ., ℓ. The likelihood function is

Lðθ j xÞ ¼ n��!
�
Y‘

i¼1

Yc

j¼1

xij!

" #
Y‘

i¼1

Yc

j¼1

y
xij
ij : ð20Þ

The likelihood function under H is

Lðθ j x;HÞ ¼ n��!
�
Y‘

i¼1

Yc

j¼1

xij!

" #
Y‘

i¼1

y
ni�
i�

Yc

j¼1

y
n�j
�j ; ð21Þ

and the LRT λ statistic is

lðxÞ ¼
Y‘

i¼1

ni�

n��

� �ni�Yc

j¼1

n�j
n��

� �n�j�Y‘

i¼1

Yc

j¼1

xij

n��

� �xij

: ð22Þ

• Exact LRT p-value:
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As shown in Subsection 1.1, this p-value is obtained the same way but with a different h(x).

In this case,

hðxÞ ¼ n��!ðn�� þ ‘Þ!ðn�� þ cÞ!
�

Y‘

i¼1

Yc

j¼1

xij!
Y‘

i¼1

ni�!
Yc

j¼1

n�j!

" #

: ð23Þ

• FBST:

Assuming a Dirichlet(1, . . ., 1) as prior distribution for θ and that the outcomes of Table 2

follow a Multinomial(n, θ11, . . ., θ1c, . . ., θℓ1, . . ., θℓc) distribution, then the posterior distribu-

tion is a Dirichlet(x11 + 1, . . ., x1c + 1, . . ., xℓ1 + 1, . . ., xℓc1 + 1). The e-value is obtained from

Definition 1 and

sup
θ2YH

pðθ j xÞ ¼ ðnþ ‘c � 1Þ!
Y‘

i¼1

ni�

n

� �ni�Yc

j¼1

n�j
n

� �n�j
�

Y‘

i¼1

Yc

j¼1

xij!

" #

: ð24Þ

Fig 1. Geometric representation of the independence hypothesis (gray surface) for 2 × 2 tables. The parametric

space is the three-dimensional simplex (regular tetrahedron).

https://doi.org/10.1371/journal.pone.0199102.g001
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• Other indices:

We obtained the asymptotic LRT p-value and e-value, considering that −2ln(λ(X)) follows a

X2 distribution with (ℓ − 1)(c − 1) and (ℓc − 1) degrees of freedom. We also obtained the p-

value for the Chi-Square independence test.

1.4 Hardy-Weinberg equilibrium

An individual’s genotype is formed by a combination of alleles. If there are two possible alleles

for one characteristic (say A and a), the possible genotypes are AA, Aa or aa. Considering a

few premises true [31], the principle says that the allele probability in a population does not

change from generation to generation. It is a fundamental principle for the Mendelian mating

allelic model. If the probabilities of alleles are θ and 1 − θ, the expected genotype probabilities

are (θ2, 2θ(1 − θ), (1 − θ)2) 0� θ� 1.

Considering the Hardy-Weinberg equilibrium, the aim is to verify if a population follows

these genotypes proportions. Therefore, the equilibrium hypothesis is

H :

y1 ¼ y
2
;

y2 ¼ 2yð1 � yÞ;

y3 ¼ ð1 � yÞ
2
;

8
>>><

>>>:

in which θ1, θ2, θ3 are the proportions of AA, Aa, and aa, respectively. This hypothesis is geo-

metrically represented in Fig 2.

Fig 2. Geometric representation of the Hardy-Weinberg equilibrium hypothesis (black line), and the parametric

space (gray shading).

https://doi.org/10.1371/journal.pone.0199102.g002
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Let X be a random vector. Table 3 represents the genotype frequencies for the population in

question. Considering n known, we assume that X follows a Trinomial(n, θ1, θ2, θ3) distribu-

tion. The likelihood function for this model is

Lðθ j xÞ ¼
n!

x1!x2!x3!

� �

y
x1

1
y
x2

2
y
x3

3
; ð25Þ

in which x = {x1, x2, x3}, θ1 + θ2 + θ3 = 1 and θi> 0, i = 1, 2, 3. Under the hypothesis H,

Lðθ j x;HÞ ¼
n!

x1!x2!x3!

� �

2x2 y
2x1þx2ð1 � yÞ

2x3þx2 ; 0 � y � 1: ð26Þ

The maximum likelihood estimator for θ under H is ŷ ¼ ð2x1 þ x2Þ=ð2nÞ and the LRT λ
statistic is

lðxÞ ¼
2x2 ŷ2x1þx2ð1 � ŷÞ

2x3þx2

x1

n

� �x1 x2

n

� �x2 x3

n

� �x3
: ð27Þ

• Exact LRT p-value:

Calculations follow as for the other indices and in this scenario

hðxÞ ¼
n!2x2ð2x1 þ x2Þ!ð2x3 þ x2Þ!

x1!x2!x3!ð2nþ 1Þ!
: ð28Þ

• Barnard’s Exact Test:

The critical region is R = {λ(X)� λ(x)}, and the Barnard’s exact p-value is obtained by

p‐value ¼ max
0�y�1

X

R

n!

x1!x2!x3!

� �

2x2y
2x1þx2ð1 � yÞ

2x3þx2 : ð29Þ

• FBST:

Assuming a Dirichlet(1, 1, 1) prior for θ and that X follows a Trinomial(n, θ1, θ2, θ3) distri-

bution, the posterior distribution is θ j x * Dirichlet(x1 + 1, x2 + 1, x3 + 1). In this setting,

sup
θ2YH

pðθ j xÞ ¼
ðnþ 2Þ!

x1!x2!x3!
2x2

2x1 þ x2

2n

� �2x1þx2 x2 þ 2x3

2n

� �x2þ2x3

: ð30Þ

Table 3. Genotype frequency.

AA Aa aa total

X x1 x2 x3 n

n = x1 + x2 + x3.

https://doi.org/10.1371/journal.pone.0199102.t003
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• Other indices:

Both asymptotic LRT p-value and asymptotic e-value are obtained, the p-value considering

that −2 ln(λ(X)) follows a X2 distribution with 1 degrees of freedom and the FBST considering

that it follows a X2 distribution with 2 degrees of freedom.

2 Results

2.1 Relations between the indices

In many practical situations, mainly in biological studies, asymptotic distributions are used to

evaluate indices even for small samples. With that in mind, one of our interests is to under-

stand how the use of asymptotic results for small sample size settings compares to the use of an

exact index. Surprisingly, the values of exact and asymptotic indexes do not diverge

considerably.

As our objective is to compare the indices, we consider different scenarios for each hypoth-

esis. For each scenario, we evaluate the significance indices of all test procedures presented

here. Note that this is not a simulation study; for each sample size, we evaluate the indices for

all possible contingency tables of a fixed dimension and size. For example, considering homo-

geneity hypothesis in a 2 × 2 table with marginals (10, 10), there are 121 possible tables or con-

sidering independence hypothesis in a 2 × 3 table with marginal 15, there are 15504 possible

tables. We evaluated the indices for all tables that fit into each specification. For the e-value

computation, non-informative priors for the parameters are considered (that is, π(θ)/ 1).

This way, no extra information is added besides the data, allowing fair comparisons between

frequentist and Bayesian indices.

For each scenario, plots are drawn to illustrate differences between the indices’ values. The

indices studied are the exact LRT p-value, asymptotic p-value for the LRT, asymptotic p-value

for the chi-square test, e-value and asymptotic e-value. For the homogeneity hypothesis in

2 × 2 tables, Fisher and Barnard exact tests were also considered, and for Hardy-Weinberg

equilibrium hypothesis the Barnard’s exact test was also obtained. We considered many differ-

ent scenarios, however, since the aim is to understand the indices in small sample size, the sce-

narios presented here are in Table 4.

Figs 3, 4 and 5 illustrate the results of the discussion above. For all hypotheses, exact and

asymptotic e-values are very similar for both large and small sample sizes. Looking into the fre-

quentist indices, exact LRT p-values and asymptotic p-values, both LRT and Chi-Square, are

also very similar to each other. The difference found between e-values when compared to

Table 4. Considered scenarios.

Setting Hypothesis Table Sample sizes

1 Homogeneity 2 × 2 (30, 30)

2 Homogeneity 2 × 2 (100, 100)

3 Homogeneity 2 × 3 (30, 30)

4 Homogeneity 3 × 3 (15, 15, 15)

5 Independence 2 × 2 30

6 Independence 2 × 3 30

7 Independence 3 × 3 15

8 Independence 3 × 3 25

9 Hardy-Weinberg equilibrium - 30

10 Hardy-Weinberg equilibrium - 100

https://doi.org/10.1371/journal.pone.0199102.t004
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asymptotic LRT p-value happens as a result of the way these indices are formulated: while e-

values consider the full dimension of the parameter space, p-value consider the complemen-

tary dimension of the set corresponding to hypothesis H. This is expected from the asymptotic

relationship between e-value and p-value from the LRT [13, 14]. Since the exact LRT p-value is

directly related to the asymptotic LRT p-value, we observe the same behavior of the differences

between e-values and asymptotic LRT p-value. Fisher’s exact test was only calculated for the

homogeneity hypothesis in 2 × 2 tables, and Barnard’s exact test was calculated for the homo-

geneity hypothesis in 2 × 2 tables and for the Hardy-Weinberg equilibrium hypothesis. Both

indices have a different behavior among the other indices considered. They have a discrete

behavior, which is not surprising since Fisher’s exact test is a conditional test and Barnard’s

exact test takes a maximization nuisance parameter elimination. Looking at the plots, their val-

ues do not form a continuous curve like the other indices’ values do, and its points are quite

far from all the other indices.

Fig 3. Scaterplots for the significance indices of homogeneity hypothesis considering different sample sizes and

different table dimensions. The indices were evaluated for all possible samples in the sample space. The label in the

top box of that column give the index in the x-axis, and the label in the left box of that row give the index in the y-axis.

Each table dimesions and sample sizes are given in the sublabels.

https://doi.org/10.1371/journal.pone.0199102.g003
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2.2 Power function

Power functions are a useful tool to compare hypothesis tests. For all θ 2Θ, the power function

provides the probability of rejecting the hypothesis for a given θ. In fact, we look for a test that

does not reject the hypothesis for θ 2ΘH and the further the θ value is from the hypothesis, the

probability of rejection increases.

The power functions presented are the ones that we are able to represent in R3, which are

the power functions for the homogeneity hypothesis in 2 × 2 contingency tables and for the

Hardy-Weinberg equilibrium hypothesis.

We used p-values less than 0.05 as a decision rule to reject the hypothesis. This choice is

based on what is vastly used in most fields of science as a decision rule. In this case, Power

(θ1, θ2) = P(reject H|(θ1, θ2) and Reject H if index� 0.05.

We obtain the power function for all tests but the FBST. The FBST is a Bayesian signifi-

cance test and in order to obtain a power function, one would need a decision rule. Since its

Fig 4. Scaterplots for the significance indices of independence hypothesis considering different sample sizes and

different table dimensions. The indices were evaluated for all possible samples in the sample space. The label in the

top box of that column give the index in the x-axis, and the label in the left box of that row give the index in the y-axis.

Each table dimesions and sample sizes are given in the sublabels.

https://doi.org/10.1371/journal.pone.0199102.g004
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construction differs from that of the p-values, we cannot use the same decision rule, and con-

structing a decision rule is not in the scope of this paper.

We used a Monte Carlo procedure to evaluate the power function of these tests. We con-

sider a grid for the unit square with 100 × 100 points on the axes (θ1, θ2). For each point in the

grid we generated 1000 tables. From these 1000 tables we evaluate the proportion of rejections,

which is an approximation of the power function.

We plot pairs of power functions to illustrate and compare their shapes. For the homogene-

ity hypothesis in a table with marginals (10, 10), Fig 6 shows that Fisher’s exact test is less

powerful than the Barnard’s exact test, the Barnard’s exact test is has similar power when com-

pared with the Chi-square test, while the Chi-square is less powerful than the proposed exact

LRT p-value, which is less powerful than the asymptotic p-value for the LRT. To have a clear

picture, we plot the power functions from different tests against each other. Fig 7a consists of

the power functions for tables with marginal equals to (10, 10). It shows that the use of the

asymptotic p-value for the LRT results in a more powerful test than the other indices. When

comparing the proposed exact p-value to other indices, it is more powerful than the Chi-

square test and the Fisher’s exact test. Between the Chi-square and the Fisher’s exact test, the

Chi-square test is more powerful.

Fig 5. Scaterplots for the significance indices of Hardy-Weinberg hypothesis considering different sample sizes

and different table dimensions. The indices were evaluated for all possible samples in the sample space. The label in

the top box of that column give the index in the x-axis, and the label in the left box of that row give the index in the y-

axis. Each table dimesions and sample sizes are given in the sublabels.

https://doi.org/10.1371/journal.pone.0199102.g005

Fig 6. Power function for homogeneity hypothesis in 2 × 2 contingency tables with n1� = n2� = 10.

https://doi.org/10.1371/journal.pone.0199102.g006
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For tables with marginal equals to (100, 100), the graphs are more concentrated near the

identity line (Fig 7b), showing that all indices are more alike. The ordering still exists, but it is

less severe. It is interesting to point out that, as expected, the Chi-square test works better with

larger samples.

For the Hardy-Weinberg hypothesis, the results are similar to the ones obtained for the

homogeneity hypothesis and are shown in Figs 8 and 9. In this case, the most powerful test was

the asymptotic p-value for the LRT, followed by the exact p-value for the LRT, which is more

powerful to the Chi-square test, that is similar the Barnard’s exact test. We call attention to the

fact that, under hypothesis H, the power function achieves the value of 0.05, as expected, since

this is the significance level chosen to build the power functions.

3 Conclusion

After evaluating the indices for tables in different scenarios, we noticed that all of them had

very similar behaviors, independently of the perspective (Bayesian or frequentist), sample size

and table dimension. The exceptions are the p-values for Fisher and Barnard’s exact tests for

the homogeneity hypothesis in 2 × 2 tables, and Barnard’s exact test for Hardy-Weinberg

Fig 7. Plots of power function values for the homogeneity test. Each graph presents one index versus another, each

dot representing a point in the considered parametric space (in this case, 100 × 100 = 10000 points), and if a dot is on

top of the gray identity line, the power functions assume the same value for that point in the parametric space. The

scenario is 2 × 2 with marginals n1� = n2� = 10 in (a) and n1� = n2� = 100 in (b).

https://doi.org/10.1371/journal.pone.0199102.g007

Fig 8. Power function for Hardy-Weinberg equilibrium hypothesis with n = 10.

https://doi.org/10.1371/journal.pone.0199102.g008
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equilibrium, which show a discretized behavior. Studying the power functions considering

homogeneity hypothesis in 2 × 2 tables and Hardy-Weinberg equilibrium hypothesis, the LRT

presented itself as a powerful test when considering small sample sizes, while Fisher’s exact test

was the least powerful one for the homogeneity hypothesis and the Barnard’s exact test was the

least powerful for the Hardy-Weinberg equilibrium hypothesis. By enlarging sample sizes, the

power of these tests increases accordingly.

Finally, we finish this paper listing our main conclusions:

• The LTR asymptotic p-value seems to be a good frequentist alternative for small sample

sizes.

• Since there is an asymptotic relationship between the p-value for the LRT and the e-value

(FBST), we consider that both indices are equivalent in the explored settings.

• In cases where there is available information besides the data that to be taken into account,

represented by informative priors, we consider the e-value a more appropriate index than a

frequenstist one, since the e-value offers a mechanism to incorporate that information.
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