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Abstract

The powerful HiSeq X sequencers with their patterned flowcell technology and fast turn-

around times are instrumental for many large-scale genomic and epigenomic studies. How-

ever, assessment of DNA methylation by sodium bisulfite treatment results in sequencing

libraries of low diversity, which may impact data quality and yield. In this report we assess

the quality of WGBS data generated on the HiSeq X system in comparison with data gener-

ated on the HiSeq 2500 system and the newly released NovaSeq system. We report a sys-

tematic issue with low basecall quality scores assigned to guanines in the second read of

WGBS when using certain Real Time Analysis (RTA) software versions on the HiSeq X

sequencer, reminiscent of an issue that was previously reported with certain HiSeq 2500

software versions. However, with the HD.3.4.0 /RTA 2.7.7 software upgrade for the HiSeq X

system, we observed an overall improved quality and yield of the WGBS data generated,

which in turn empowers cost-effective and high quality DNA methylation studies.

Introduction

Methylation of cytosine residues (5-mC) in the CpG context is a key epigenetic mark which is

involved in processes such as regulation of gene expression, cell differentiation, genomic

imprinting, X-chromosome inactivation, transposon silencing and chromosomal stability [1].

Aberrant methylation patterns have been shown to be associated with a growing number of

conditions and disease, in particular cancer [2].

Bisulfite conversion, in which unmethylated cytosines are converted to uracil (and subse-

quently to thymine after PCR) whilst methylated cytosines remain unchanged [3], remains the

gold standard technique for detecting DNA methylation and is often used in combination

with SNP genotyping or next generation sequencing (NGS) for interrogation of DNA methyla-

tion of individual CpG sites. The most popular method has been the Infinium BeadChip

assays, which interrogate the methylation status of cytosine residues by genotyping cytosine or

thymine (methylated vs unmethylated cytosine residues) using a predetermined set of probes

in a microarray format. The Infinium assays offer quantitative measurement of DNA methyla-

tion and have been launched with increasing numbers of target CpG sites over the last decade

[4]. The EpiTYPER-MassARRAY (Agena) is a different type of assay that allows high-
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throughput quantitative methylation analysis of multiple CpG sites in PCR amplicons in a

workflow comprising bisulfite conversion, targeted PCR amplification and MALDI-TOF mass

spectrometry [5]. More recently, direct read-out of methylation status of single CpG sites and

other base modifications has been demonstrated using new single-molecule sequencing chem-

istries that circumvent the need for chemical modification of DNA for example on the PacBio

or Oxford Nanopore platforms [6, 7].

However, whole genome bisulfite sequencing (WGBS) using massively parallel short-read

sequencing is the only method widely available today that can provide an affordable, high

throughput and unbiased view of the entire methylome, which comprises ~28 million CpG

sites in humans. Bisulfite converted sequencing-libraries constitutes a particular case of low

diversity sequences where the base composition is reduced to virtually three nucleotides (A,T,

G) and a very small fraction of Cs, which represents the small portion of methylated cytosines

in a genome. Sequencing of libraries with unbalanced base composition on the Illumina sys-

tems has historically been challenging, frequently leading to low data yields and inferior

sequencing quality [8] [9] [10]. Such issues can, in part, be attributed to earlier versions of the

software operating the image analysis and base calling onboard the instrument, which were

not adapted for handling low diversity sequences. The HiSeq Control Software (HCS) operates

the imaging and calls the Real Time Analysis software (RTA) to execute intensity extraction,

base calling and quality scoring. Previously, a dedicated control lane with a balanced library

with A/T and G/C equally represented and a high level of spike-in with a high diversity library

such as PhiX was required to improve data quality and yield [10]. For WGBS specifically, low

base calling quality scores (Q-scores) assigned to guanines (representing methylated positions)

have been reported in data generated with a certain version of HCS and RTA on the HiSeq

2500 system [11]. Moreover, the aforementioned WGBS data was shown to significantly devi-

ate in terms of global methylation levels compared to data generated from identical libraries

using other HiSeq 2500 software versions on the same instrument, suggesting that the reduced

Q-scores of nucleotides representing 5-mC in bisulfite sequencing may result in biased meth-

ylation levels. Updates of the HCS and RTA software, which were first implemented on the

MiSeq system and later also on the HiSeq2500 system (from HCS v2.2.38/ RTA 1.18.61 and

forward), conferred significant improvements in data yield and sequence quality of low diver-

sity libraries, including bisulfite converted libraries [10].

Illumina’s HiSeq X system is the current work horse for whole genome sequencing studies.

The patterned flow cell technology on the HiSeq X has significantly increased throughput and

pushed costs close to the $1000 genome. The HiSeq X platform is now open to WGBS at an

equal favorable price per base, and thus holds great promise for large-scale methylome studies.

However, considering previous software related issues with bisulfite sequencing, an examina-

tion of the quality of WGBS data generated on the HiSeq X system is warranted.

We therefore performed a retrospective quality control analysis of WGBS data that was gen-

erated from a set of control DNA samples within our core facility over time using different

software versions on the HiSeq X, the HiSeq2500 and most recently, the NovaSeq. We identi-

fied substantial low Q-scores assigned to guanines in the second read of paired-end WGBS

data with certain HCS/RTA versions. Notably, this issue was mitigated in the most recent

HiSeq X software update HCS: HD.3.4.0 /RTA 2.7.7 and we demonstrate that the latest HCS/

RTA version provide sequences of high quality, comparable to WGBS data generated on the

HiSeq 2500 system. Despite low Q-scores assigned to guanines by certain software versions,

we observed only minor differences in global methylation levels across libraries prepared with

the same method. Rather, we observe that global methylation rates vary more depending on

the choice of library preparation protocol. In spite of differences in global methylation rates,
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correlation of methylation at individual CpG sites across methods and sequencing software

were in general high.

Results and discussion

Low Q-scores assigned to guanines in bisulfite sequencing reads generated with HiSeq 2500 sys-

tems installed with certain HCS/RTA software versions have previously been observed [11]. This

particular issue was primarily observed at guanine positions in the second read (R2) of direc-

tional MethylC-Seq libraries whereas the first read (R1) did not significantly suffer from low Q-

scores at any nucleotide type. The small fraction of cytosines, which are not converted during

bisulfite treatment, represents methylated positions in the genome. Most types of WGBS library

protocols are designed to sequence the original top and bottom DNA strands and thus methyl-

ated positions are sequenced as cytosines in R1 and as guanines in R2 of paired-end sequencing.

Interestingly, a recent study demonstrated low Q-scores at guanines in R1 for PBAT-type bisul-

fite sequencing libraries, in a HCS/RTA software version specific manner [12]. In contrast to the

majority of WGBS library protocols, PBAT libraries are constructed to sequence the comple-

mentary to the original strands, hence methylated cytosines are sequenced as guanines in R1 and

as cytosines in R2 [12]. Low Q-scores assigned to guanines in R2 of MethylC-seq libraries or in

R1 of PBAT libraries implies that the issue is related to low content of guanines in bisulfite con-

verted reads. Moreover, as the fraction of guanines in R2 of most WGBS libraries (or R1 of

PBAT) is very low, extensive Q-score reduction at guanines will not be obvious when inspecting

average base quality in general. Overall low Q-scores of guanines in WGBS data may indicate a

higher probability of base calling errors, which in turn could cause technical variance of methyla-

tion levels. Moreover, reduced Q-scores could potentially lead to lower alignment rates and data

loss as less data might pass quality filtering. For bisulfite sequencing on HiSeq 2500 (v4 chemis-

try), the guanine Q-score issue was mitigated from software update HCS v2.2.38/RTA 1.18.61

and forward so that WGBS data generated with this system is now generally of high quality [13]

and can such be used for comparison with data generated on the HiSeq X and NovaSeq systems.

In order to retrospectively examine the quality of bisulfite data generated with the HiSeq X

system we analyzed a set of WGBS libraries from a core set of DNA samples that were prepared

with three different library preparation protocols and sequenced across different software ver-

sions. The WGBS data was generated with three different HCS and RTA versions for HiSeq X;

HCS v3.3.39/RTA 2.7.1, v3.3.75/RTA 2.7.5, and the most recent update; HD.3.4.0 /RTA 2.7.7.

In addition we included WGBS data generated from a pilot sequencing run on the NovaSeq

instrument. For this comparison we examined sequence data that were generated from Accel-

NGS Methyl Seq (Swift Biosciences), TruSeq DNA Methylation (TSDM, formerly EpiGnome,

Illumina Inc) and splinted ligation adapter tagging (SPLAT, [14]) libraries prepared from lym-

phoblastoid cell lines (NA10860, NA11992) or the leukemic cell line REH The DNA samples

used, library pools and sequence data generated is outlined in S1 Fig. General metrics for all of

the sequencing runs are found in Table 1. For comparison we included previously published

data generated from libraries from the same DNA samples sequenced on the HiSeq 2500 sys-

tem (HCS v2.2.38/RTA 1.18.61) [13]. Hereafter all versions of HiSeq or NovaSeq software will

be presented by the RTA version alone.

Low quality scores assigned to guanines in R2 by certain HiSeq X HCS/

RTA software versions

To assess the quality of data generated by different HCS/RTA versions on HiSeq X we consid-

ered Q-scores assigned to the four nucleotide types separately (A, C, G and T) on three HiSeqX

versions: RTA 2.7.1, RTA 2.7.5, and RTA 2.7.7. For each of the four bases, in R1 and R2, RTA
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2.7.7 displayed significantly higher Q-scores than the previous two version (Fisher’s exact p-

value < 0.001, Fig 1), showing an overall improvement in the quality scoring. For all bases in

R1 high Q-scores (>30) were still assigned to each of the four nucleotide types (average Q-

score per nucleotide type: 33–38), irrespective of sample, library protocol, or software version

on the sequencer (S1 and S2 Tables). The overall differences in Q-scores between RTA ver-

sions 2.7.1 and RTA 2.7.5 and the newest RTA version 2.7.7 generally were negligible (mean

difference across library types: 0.80–1.49). The Q-scores for R2 for all bases and software ver-

sions were generally lower and more variable than in R1 (Fig 1). The R2 Q-scores for versions

2.7.1/2.7.5 were significantly lower (Fisher’s exact p-value <0.001) and more variable than in

version 2.7.7. Despite this, the Q-scores for adenine, cytosine, and thymine bases were still on

average > 30. However, the Q-scores for guanines in R2 were substantially lower in versions

2.7.1/2.7.5 compared to version 2.7.7 (overall difference in Q-score 8.08), even though high

amounts of a balanced PhiX library was spiked-in to each lane (20–40%). This feature was

Table 1. Per library sequencing metrics.

Library Sample # read pairsa(M) % Alignment ratea % Duplicate reads Gb seq Gb yieldb % yieldb Insert size % PhiX

HiSeqX HCS: HD.3.4.0 RTA: 2.7.7
Accel-1a NA10860 501 78–79 15–20 150 78 52 175 2

SPLAT-1a NA10860 470 79–80 16–21 142 84 59 185 2

TSDM-5 NA10860 550 77–79 38–40 166 66 40 167 2

TSDM-6 REH 506 77–79 34–37 153 64 42 170 2

TSDM-7 REH 303 78–80 36–38 93 37 40 154 2

HiSeqX HCS: 3.3.39 RTA: 2.7.1
SPLAT-1a NA10860 83 75 11 24 15 62 185 � 20

SPLAT-1b NA10860 191 75 13–14 58 33 57 178 � 20

SPLAT-3a REH 81 73 11 25 14 58 188 � 20

SPLAT-3b REH 174 74–75 12–14 53 13 59 195 � 20

TSDM-1a NA10860 80 68 13 24 11 46 158 � 20

TSDM-2 REH 52 73 17 26 10 41 143 � 20

HiSeqX HCS: 3.3.75 RTA: 2.7.5
SPLAT-5 NA11992 184 69–71 14–17 38 20 53 204 � 20

SPLAT-6 NA11992 119 70–73 14–18 36 20 55 209 � 20

SPLAT-7 NA11992 115 69–72 14–18 35 19 54 210 � 20

SPLAT-8 NA10860 128 73–76 14–17 39 21 54 160 � 20

SPLAT-9 NA10860 128 68–71 15–19 39 21 54 191 � 20

TSDM-3 NA10860 145 78 20 44 21 48 140 � 20

TSDM-4 REH 117 79 14 35 19 52 144 � 20

NovaSeq Control Software 1.0.2 RTA:3.1.5
TSDM-7 REH 287, 282 70, 70 46, 46 170 48 28 143 > 50

HiSeq2500 HCS: 2.2.38 RTA: 1.18.61
SPLAT-10ab NA10860 342 70 1 79 51 64 198 10

SPLAT-11ab REH 362 80 1 90 68 75 193 10

Accel-1ab NA10860 318 82 1 79 52 66 173 10

Accel-2ab REH 266 82 1 66 43 65 168 10

TSDM-1a NA10860 342 77 15 85 46 54 159 10

TSDM-8 REH 355 78 13 88 51 58 157 10

a reported as the total number of reads across lanes per library
b Yield is defined as the number of Giga bases retained after pre-processing, mapping and deduplication.

https://doi.org/10.1371/journal.pone.0195972.t001
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observed in all library types and samples, however it was particularly pronounced in data from

SPLAT libraries (average G-base Q-scores: 22–29) in comparison to data generated with TSDM

libraries (average: 26–32) (Figs 2 and 3, S1 Table). SPLAT libraries prepared from various

human sample sources (REH, NA10860, NA11992), each with differing levels of global methyla-

tion, were equally affected (S1 Table). TSDM libraries display a typical and pronounced GC bias

(average 26.1–26.8% GC content in bisulfite converted reads for NA10860), meaning that GC

regions are overrepresented in this library type, whereas SPLAT libraries have a more even

representation of the genome average (22.5–25.1% GC content in bisulfite converted reads for

NA10860) [13]. Therefore, it appears that the guanine Q-scores assigned by RTA: 2.7.1 and

RTA: 2.7.5 appear to improve with increasing GC content of the library (S2 Fig).

WGBS data quality and yield with the HiSeqX HD.3.4.0/RTA 2.7.7

software update

The HCS/RTA software update for the HiSeq X system (HD.3.4.0 /RTA 2.7.7) was released by

Illumina in February 2017 in order to achieve better performance of WGBS on the HiSeq X.

For this software version, WGBS data was available for three different WGBS library types

(TSDM, SPLAT and Accel-NGS) to an average of ~ 500 M read pairs per library with a 2%

PhiX spiked-in (S1 Fig).

Generally, all the libraries displayed high Q-scores for all four nucleotides types in both

reads pairs, which were consistent across all sequencing lanes at similar levels to WGBS data

generated from the same library types and DNA samples on the HiSeq 2500 (Figs 2 and 3, S3

Fig and S2 Table). Notably, the same exact SPLAT library that resulted in low Q-scores when

sequenced with RTA 2.7.1 (SPLAT-1a, average guanine Q-score:22) exhibited much improved

quality when the same library was sequenced with software version RTA 2.7.7 (SPLAT-1a,

average guanine Q-score: 32–33). This finding strengthens the notion that the Q-score issue is

software related and does not originate from the sequencing library per se. Moreover, the

SD
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trend towards higher guanine Q-scores with libraries with increased GC content, which was

observed with the earlier HiSeq X software versions, was not as evident in the data generated

by software version RTA 2.7.7 (S2 Fig).

Next, we were interested in how the amount of “usable” data (post alignment) obtained

from a HiSeq X lane compares to a HiSeq2500 lane. Alignment rates of the WGBS data gener-

ated on the HiSeq X with RTA 2.7.7 were on par with previously generated WGBS data from

HiSeq 2500 [13] and higher than those obtained from the earlier HiSeq X software version

(77–80% as compared to 65–75%) (Table 1). The levels of duplicate reads were 15–20% for

SPLAT and Accel-NGS Methyl-Seq, whilst the TSDM libraries had higher (34–40%) duplica-

tion rates. All of the libraries displayed higher duplication rates on the HiSeq X than what was

observed for the same library types sequenced on HiSeq 2500 (~2% and 15% for SPLAT and

TSDM respectively). A large part of the duplicated reads in the SPLAT and Accel-NGS librar-

ies are likely ExAmp duplicated reads, although we did not observe any obvious difference in

the level of duplicate reads when loading different amounts of library of on the flow cell (100,

150 or 200 pM) (Table 1). Following adapter and quality trimming, mapping and deduplica-

tion, 57–61% of the generated raw data was retained for the SPLAT library, 50–52% for the

Accel-NGS Methyl-Seq library and 34–40% for the TSDM libraries (Table 1). Thus, more data

was retained for SPLAT and Accel-NGS Methyl-Seq libraries, as a result of longer insert sizes

and lower duplication rates compared to the TSDM libraries. On average we obtained data

(post mapping and deduplication) corresponding to ~25x genome coverage per HiSeq X lane

for SPLAT, ~22x for Accel-NGS Methyl-Seq, and ~17x for TSDM. Thus from one HiSeq X

lane we generated approximately the same amount of high quality WGBS data as was previ-

ously obtained from two HiSeq2500 lanes [13], at approximately one fourth of the cost.

WGBS on NovaSeq; results from a pilot experiment

NovaSeq is the latest iteration of Illumina sequencers for which the patterned flow cell technology

is paired with a 2-color detection system for enhanced speed and throughput. For an initial assess-

ment of WGBS data generated on the NovaSeq system we ran a single TSDM WGBS prepared

from the REH cell line (TSDM-7), which was also sequenced on the HiSeqX with RTA: 2.7.7. The

library was sequenced on a single S2 flow cell across two lanes together with a pool of well-balanced

libraries corresponding to 12% of the data derived from each lane. The remaining fraction con-

tained PhiX (50%, installation run) and RNA-seq libraries. We observed a tendency towards lower

Q-scores at the end of reads, which was most prominent for the methylated bases (C in R1 and G

in R2, Fig 2G). The alignment rate was lower (70%) than obtained for the identical TSDM-7 library

sequenced on HiSeqX (80%), most likely as a consequence of the lower Q-scores (Table 1). High

duplication rates and lower mapping efficiencies resulted in a total yield of 28% of the unprocessed

data compared to 40% for the identical TSDM-7 library sequenced on HiSeqX (RTA2.7.7).

Minor variation in average methylation levels between data derived from

different HCS/RTA software versions

In a previous study, up to 5% deviation in global methylation levels was observed in PBAT

WGBS libraries sequenced with HCS 2.0.12/RTA 1.17.21.3 version on the HiSeq 2500,

Fig 2. Examples of average base call quality scores for whole genome bisulfite sequencing of libraries prepared from lymphoblastoid cell

line NA10860. Per nucleotide quality scores (average for each sequencing cycle) for read 1 and read 2 separately. A-D) SPLAT libraries. E-H)

TSDM libraries. Panels A,B,C and E,F,G show Q-scores obtained with HiSeq X RTA versions, the version numbers are noted in each panel.

Panels D and H show corresponding data generated on the HiSeq 2500 platform. Q-boxplots for guanines exclusively in read 2 are plotted in

the rightmost panels.

https://doi.org/10.1371/journal.pone.0195972.g002
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presumably due to low Q-scores of guanine bases that correspond to methylated cytosines

[11]. Thus, in a similar fashion, we compared global methylation levels across data generated

on the HiSeq X with the various software versions and HiSeq 2500 in order to determine if the

low Q-scores is associated with bias in methylation-calling (Fig 4A, S3 Table). Notably, within

the same DNA sample and library type we observed only negligible (min-2%) differences in

global methylation levels, which does not appear to be software-specific. For example, the larg-

est difference observed was 1.6% between SPLAT-NA10860 libraries produced with the origi-

nal protocol, sequenced on the HiSeqX RTA 2.7.7 in comparison to the HiSeq2500 (S3 Table).

For SPLAT libraries amplified with a different PCR polymerase (Phusion U) the largest differ-

ence observed was 2%. As discussed previously, the lowest guanine Q-scores in R2 were

observed in SPLAT libraries when sequenced on RTA 2.7.1. Thus, we analyzed the global

methylation levels of R1 and R2 independently in these libraries, and found that the largest dif-

ference observed was only a 0.5% difference in global methylation (Table 2).

On the other hand, the different library preparation protocols resulted in up to 4.5% differ-

ences in global methylation levels. The difference was most prominent in the immortalized B-

cell line, NA10860, which is intermediary methylated on a global scale (average per library

55.8–60.3%). The highest global methylation levels derived from the NA10860 cell line were
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Table 2. Global methylation levels computed from R1 and R2 separately.

Library Sample Software version Average methylation

R1

Average methylation

R2

SR Alignment rate

R1

SR Alignment rate

R2

PE Alignment

rate

SPLAT-

1a

NA10860 HCS: HD.3.4.0

RTA:2.7.7

55.5% 55.8% 86.1% 83.7% 80.3%

SPLAT-

1a

NA10860 HCS:3.3.39 RTA:2.7.1 55.6% 56.1% 82.5% 77.4% 75.3

SPLAT-

1b

NA10860 HCS: 3.3.39 RTA:2.7.1 55.6% 56.1% 82.6% 76.6% 74.8

https://doi.org/10.1371/journal.pone.0195972.t002
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observed in the TSDM libraries (59.1–60.3%) and lowest in SPLAT and Accel-NGS Methyl-

Seq libraries (55.8%-57.7%) (Fig 4A, S3 Table). Analysis of average methylation in 100 kB win-

dows in the same data further confirmed this pattern (Fig 4B). For the leukemic REH cell-line,

the largest inter-library difference observed was 2.6% (average global methylation levels 81.1–

82.1% and 80.3–80.6% for SPLAT/Accel-NGS and TSDM libraries, respectively). Hence, we

suggest that the variability observed in global methylation levels are more likely caused by

alternative factors in the chemistry or PCR amplification used during library preparation than

by issues with base calling or Q-scores and may be related to the GC biases observed for some

library methods.

Concordance of methylation calls between HiSeq platforms

Next, we analyzed the correlation of methylation calls across the same type of libraries

sequenced on HiSeq X and HiSeq 2500, by comparing either individual CpG sites or average

methylation in 100 kb non overlapping windows. For methylation in 100 kb windows the

Pearson’s correlation coefficient (Pearson’s R) was > 0.99 in comparisons between HiSeq X

RTA:2.7.7 and HiSeq 2500 verifying that methylation levels are called with high confidence on

the HiSeq X platform (Fig 5A). Similarly, the Pearson’s R was > 0.99 when we compared the

average methylation in 100 kB windows between all versions of the HiSeqX and HiSeq2500

(data not shown).

In order to obtain sufficient coverage to assess correlation at individual CpG sites across the

various datasets we combined technical replicates sequenced with the same software versions

(SPLAT1a+b, SPLAT3a+b, Accel1a+b, etc, see S1 Fig for an overview). In pairwise compari-

sons of single CpG sites, only sites covered by>10 reads, in each of the libraries were included.

This resulted in the analysis of ~3 M CpG sites in total and thus the correlations were com-

puted across the same set of CpG sites in all comparisons. The correlations varied depending

on sample type, however across high Q-score runs (HiSeq X RTA 2.7.7 vs HiSeq2500 RTA

1.18.61), the Pearsons’s R was 0.92–0.94 for intra-library comparisons of the NA10860 sample

and 0.96 for the REH sample (Figs 5B and 6A). When comparing SPLAT libraries sequenced

with software versions displaying low guanine Q-scores in R2 (SPLAT1ab and SPLAT3ab;

RTA2.7.1) to those with high quality scores (SPLAT 1a; RTA2.7.7 and SPLAT10ab, SPLA-

T11ab; RTA 1.18.61) the Pearson’s R was 0.93 and 0.96 (for NA10860 and REH respectively)

and thus in the same range as the high Q-score runs (Fig 6A). The highest correlation was

observed for the TSDM-7 library that was sequenced on both HiSeqX (RTA2.7.7) and NovaSeq

(Pearson’s R = 0.98). For inter-library comparisons (e.g SPLAT-TSDM, SPLAT-Accel etc) the

correlation coefficient was in the same range as the intra-library comparisons (sample NA10860;

Pearson’s R = 0.92–0.94), irrespective of software version (Fig 6A). As a second mean to measure

the variability of methylation at individual CpG sites across data we computed the pairwise root

mean square error (RMSE). The RMSE values were low within the same DNA sample type;

0.031–0.052 for the REH sample and 0.057–0.069 for the NA10860 sample (Fig 6B). The libraries

plotted in Fig 6 were ordered based on hierarchical clustering, where we observed co-correlation

based on the cell line, but no co-correlation based on sequencing instrument, RTA version, nor

library type. Although the number of replicates in this analysis is relatively low, we conclude that

low guanine Q-scores in R2 do not have a major impact on the measurement of methylation lev-

els of individual CpG sites across the data sets analyzed herein.

Conclusion

In this report we compared WGBS data generated with different Illumina platforms and soft-

ware versions. We found that certain older software versions on the HiSeq X (RTA 2.7.1 and
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2.7.5) exhibit severe issues with base quality scoring predominantly in guanines in R2, which

represent methylated positions. In such instances where the Q-tables used by the base calling

software is not adapted to bisulfite reads it is not possible to determine if a low Q-score value

reflects a true uncertainty in the guanine base calling or whether the base quality scores are

merely under-estimated. For HiSeq 2500 and HiSeq X RTA2.7.7 the R2 guanine Q-scores are

well above 30 and significantly higher than obtained in older versions of HiSeqX. However the

R2 guanine Q-scores do remain one of the lowest and most variable bases even with software

improvements.

However, as we demonstrate in the present study, when using a popular workflow for

WGBS pre-processing, alignment and methylation calling [15] we did not detect any gross

methylation bias in those WGBS datasets with low R2 guanine Q-scores as compared to corre-

sponding data with higher Q-scores. Although software-related methylation biases cannot be

completely ruled out by our comparison, it is important to note that larger differences in abso-

lute methylation levels were observed across library preparation methods than between differ-

ent software versions. Nevertheless, we advocate that inspecting base quality scores per

nucleotide type for WGBS generated on Illumina systems should be the standard and that

sequencer software version should be reported for WGBS data submitted to journals and
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databases. Importantly, although many WGBS libraries still suffer from short insert sizes and

high read duplication levels resulting in comprehensive data loss, with respect to base call qual-

ity we find that WGBS data generated with the HD.3.4.0 /RTA 2.7.7 HiSeq X version generated

high quality data comparable to those obtained with HiSeq2500, at approximately one fourth

of the per base cost.

We also evaluated WGBS data from an installation run on the new NovaSeq system and

found that the present Q-scoring is still not optimal for bisulfite sequencing. Despite this, the

methylation concordance was very high when comparing to data generated on the HiSeq X

system. In our installation run, 50% phiX was spiked-in to evaluate the performance of the

machine, but it should be noted that high amounts of phiX or another balanced library is not

likely to be required for WGBS on the NovaSeq. Additional data are needed to systematically

assess and properly validate how the two-color detection system and the novel Q-score bin-

ning approach applied on NovaSeq (using only four Q-score values) reconcile with bisulfite

sequencing and downstream analysis.

Materials and methods

Library preparation

Human genomic DNA from lymphoblastoid B- cell lines was obtained from the Coriell Insti-

tute for Medical Research. Genomic DNA from the pre-B acute lymphoblastoid leukemia cell

line REH (was isolated using the AllPrep Universal kit (Qiagen).

The EZ DNA Methylation Gold kit (Zymo Research) was used for sodium bisulfite conver-

sion of DNA prior to library preparation. All WGBS libraries were prepared from 100 ng of

genomic DNA. Accel-NGS Methyl-Seq (Swift BioSciences) and TruSeq DNA Methylation

(Illumina Inc) were prepared according to the manufacturer’s protocols. SPLAT libraries were

prepared as described previously [13] with the exception for libraries SPLAT-8 and SPLAT-9
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which were amplified with the Phusion U Hot Start DNA polymerase (Thermo Fisher Scien-

tific), whereas the other SPLAT libraries were amplified using the KAPA HiFi Uracil+ DNA

polymerase (KAPA Biosystems).

Sequencing and data analysis

Paired end sequencing (2 x 150) was performed on a HiSeq X system at the SNP&SEQ Tech-

nology Platform. The amount of library loaded on the instrument varied between 100 and 200

pM. A PhiX library was spiked in at 20–40% for HCS v3.3.39 /RTA:2.7.1 or v3.3.75/RTA:2.7.5

and at 2% for HD.3.4.0 /RTA:2.7.7). For comparison we also analyzed previously generated

sequencing data from the HiSeq2500 system (HCS 2.2.38 / RTA 1.18.61) using the TruSeq v.4

chemistry PE125 (10% PhiX) [13] and data generated on the an installation run of a NovaSeq

6000 instrument with 50% phiX spike-in (RTA:3.1.5).

Per nucleotide quality scores were extracted using FASTX-Toolkitv 0.0.14 or reported by

Sisyphus, an in-house pipeline used at the SNP&SEQ Technology Platform for processing and

QC of Illumina sequence data. Sequence reads were quality filtered and adaptors were

trimmed using TrimGalore. For Accel-NGS Methyl Seq libraries 18 bp was trimmed off the 5’-

end of R2 and the 3’ end of R1 to remove bases derived from the sequence tag introduced in

the library preparation procedure. Alignment to the human reference assembly GRCh37 and

methylation calling was performed with the Bismark software [15] and the pipeline tool Clus-

terFlow [16]. For TSDM libraries the initial 6 base pairs of each reads were ignored in the

methylation calling procedure, to avoid random priming biases. Global methylation rates (∑C/

∑(C+T) in CpG context) and methylation at individual CpG sites was obtained from Bismark

methylation extractor output files. Average methylation in 100 kB non overlapping windows

were determined using BEDTools. Methylation correlation at individual CpG sites and at 100

kB non overlapping windows and pair-wise root mean square error (RMSE) values were com-

puted using custom R scripts.
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