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Abstract

The use of antimicrobial monomers, linked to the polymer chain of resin composites, is an

interesting approach to circumvent the effects of bacteria on the dental and material sur-

faces. In addition, it can likely reduce the incidence of recurrent caries lesions. The aim of

this study was to evaluate the effects of a novel Triclosan Methacrylate (TM) monomer,

which was developed and incorporated into an experimental resin composite, on Strepto-

coccus mutans (S. mutans) biofilms, focusing on the analyses of vicR, gtfD, gtfC, covR, and

gbpB gene expression, cell viability and biofilm characteristics. The contact time between

TM-composite and S. mutans down-regulated the gbpB and covR and up-regulated the gtfC

gene expression, reduced cell viability and significantly decreased parameters of the struc-

ture and characteristics of S. mutans biofilm virulence. The presence of Triclosan Methacry-

late monomer causes harmful effects at molecular and cellular levels in S. mutans, implying

a reduction in the virulence of those microorganisms.

Introduction

Bacterial colonization, common to tooth structure, restorative materials, and prosthetic sub-

strates [1–3], is able to modify the surfaces of these materials due to interactions with micro-

rganisms. Metallic, ceramic, ionomeric, or resinous materials show different behaviors when

submitted to bacterial aggression in vitro and in situ [4,5]. On the other hand, structure and

biofilm characteristics, like glucan synthesis [6], biofilm thickness, and structure [7] could be

altered by these interactions with dental materials [8,9].
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open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors received funding only for

research project development from Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior

(AUXPE/CAPES/PROEX - 1777/2014) and from

Fundação de Amparo à Pesquisa do Estado de São
Paulo - (#2012/10750-4). The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

https://doi.org/10.1371/journal.pone.0195244
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195244&domain=pdf&date_stamp=2018-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195244&domain=pdf&date_stamp=2018-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195244&domain=pdf&date_stamp=2018-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195244&domain=pdf&date_stamp=2018-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195244&domain=pdf&date_stamp=2018-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195244&domain=pdf&date_stamp=2018-04-02
https://doi.org/10.1371/journal.pone.0195244
https://doi.org/10.1371/journal.pone.0195244
http://creativecommons.org/licenses/by/4.0/


Many studies have evaluated composites, because adhesive restorations are very common

in clinical practice and have demonstrated some clinical longevity [10,11]. However, although

resin composite restorations are extremely popular and recent advances in restorative compos-

ite technology have made the composite materials better, recurrent caries are still a reality in

clinical practice and are the major cause for composite restoration replacements [12]. Recur-

rent caries can be due to weak bonding to dental structure, mainly on the cervical wall of class

II restorations, and the interactions between the resin materials and the biofilm [13]. Conse-

quently, the monomers used in the organic matrix of resin composites, their interactions with

the biofilm formation process, and also the caries development are of interest when consider-

ing composite restorations [7,14].

Biofilm formation shows a sucrose-dependent mechanism based on glucosyltransferases

(GTFs) produced by S. mutans, which combine with glucan-binding proteins (GBPs). The glu-

can synthesis provides for bacterial adhesion to tooth, dental materials, and other microorgan-

isms [8]. It has been shown that by-products like Bis-HPPP, eluted from Bis-GMA, and

Methacrylic Acid (MA) demonstrate inhibitory effects in the gene expression of planktonic

cells [14]. In contrast, a different behavior was evidenced for gene expression analysis on bio-

films when subjected to triethyleneglycol (TEG), eluted from TEGDMA, which stimulates

GTFs activity and can increase the expression of some S. mutans genes [6,15]. Thus, possibly

both the influence of the microorganisms on the components of the organic matrix and vice

versa, may be related to the aggregation levels of the microorganisms and the elapsed time

[16].

Bacterial gene expression occurs due to the importance of specific genes, mainly glucosyl-

transferases genes (gtfB, gtfC and gtfD), responsible for modulating GTF enzymes that synthe-

size glucans (extracellular polysaccharides)[17]. Additionally, the GBP genes, most notably

gbpB, participate in membrane biosynthesis [18,19]. Nonetheless, the two-component trans-

duction systems, vicR and covR, are responsible for regulating several virulence factors in S.

mutans [17,20,21], including those described above.

Attempts to outline the effect of bacteria on restorative materials, particularly composites,

as well as the influence of materials on biofilm characteristics, have been made, trying to

reduce the virulence of S. mutans [22,23]. However, some substances added to dental materials

are not used due to side effects, mainly as teeth discoloration and bacteria resistance. In addi-

tion, some products, like triclosan added as a white powder, showed a limited bioavailability

when used as a polymer at 5%/wt and could not inhibit biofilm colonization over time [24].

With this perspective, the addition of new components [22,25,26] and the development of new

antimicrobial monomers have been studied, when these monomers became part of the poly-

mer chain, decreasing the degradation caused by elution of by-products and unreacted mono-

mers [27].

Therefore, the effectiveness and safety of triclosan as an antimicrobial agent, which primar-

ily affects the cell membrane and may even be lethal to microrganisms, depending on the con-

centration [28] should be considered. Accordingly, a new monomer, Triclosan Methacrylate

(TM), was developed to be a part of the polymeric chain of composites. Triclosan is a trichlori-

nated diphenyl ether antimicrobial with one hydroxyl group. In addition, triclosan compatibi-

lizes with a vinyl ester dimethacrylate copolymer (bis-GMA) resin and TEGDMA diluent,

increasing the flexural strength. However, triclosan was previously added as a powder into the

monomer, allowing its action thanks to the antimicrobial being released from the resin. There-

fore, the use of a triclosan linked to a methacrylate monomer in the formulation of composites

aims to reduce the effects of bacteria on material degradation, as well as reducing the potential

development of secondary caries without and side effects from triclosan release [29].
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The aim of this study was to evaluate the effect of a TM-containing experimental TEGDMA

composite on cell viability (24h) and on the S. mutans biofilm characteristics (7 days) using

quantitative measurements: average thickness, biovolume, area, and roughness surface coeffi-

cient; and qualitative measurements: cell viability (green/red) and biofilm architecture and on

the expression of vicR, gtfD, gtfC, covR and gbpB genes (4h and 24h). The hypothesis tested was

that TM-containing composite modifies the S. mutans biofilm characteristics and expression

of vicR, gtfD, gtfC, covR and gbpB genes, decreasing the biofilm virulence. As a secondary out-

come, the effect of TEGDMA-containing experimental composite was also tested concerning

the expression of vicR, gtfD, gtfC, covR and gbpB genes on decreasing the biofilm virulence.

Materials and methods

Specimen preparation

The TM monomer was obtained by an esterification process of Triclosan, i.e. 2,4,4-trichloro

hydroxy diphenyl ether 2 (Sigma Aldrich, St. Louis, MO, USA) with methacrylic acid in

dimethylformamide (DMF) solution (Sigma Aldrich), at 30˚C for 24 hours. In this study, two

composites were formulated: C1 –non-antimicrobial composite; C2 –antimicrobial composite,

as described in Table 1. The fillers were added incrementally and mixed homogeneously to a

50%wt loading using a high speed mixing machine (SpeedMixerTM DAC 150.1 FV. Hauschild,

SC, USA). When considering the filler content, the 80%wt filler was BaAlSi– 1 μm (GM27884,

Schott, Landshut, Germany) and the 20%wt filler was BaAlSi– 180 nm (GM27884, Schott,

Landshut, Germany). The manipulation of the experimental composites was carried out under

filtered orange light.

The minimum TM concentration was determined from preliminary analyzes of the anti-

bacterial effect and the maintenance capacity of this effect, as well as based on the mechanical

properties of the polymer and established at 14.4%.

Ninety-two discs (2x6mm) of C1 and C2 experimental composites were made using a sili-

con matrix under a laminar flow hood. The composites were inserted in the matrix and then

photocured using a Bluephase photocuring unit (Ivoclar Vivadent–Schaan, Liechtenstein) at

1200mW/cm2 for 20 seconds.

Ceramic discs of IPS Empress Esthetic (Ivoclar Vivadent) (CE), with the same dimensions

of resin discs (2x6mm), were prepared only for the gene expression analysis, as a control of the

method, because ceramic materials present a bioinert behavior. After injection in an EP 600

(Ivoclar Vivadent) furnace and being removed from the coating, the discs were polished using

#1200 SiC sandpaper for 30 seconds on each surface.

Table 1. Composition of materials used in the experiments.

GROUP MATERIAL COMPOSITION

CE CERAMIC Leucite-reinforced glass-ceramic ingots.

C1 NON-ANTIMICROBIAL

COMPOSITE

BISEMA1 28.7%wt; TEGDMA2 19.2%wt; Initiator: BAPO3 2,0%wt Inhibitor: BHT4 0.1%wt. Filler: Silanized Barium

silicate glass 50%wt.

C2 ANTIMICROBIAL COMPOSITE BISEMA1 20.1%wt; TEGDMA2 13.4%wt; TM 14.4%wt; Initiator: BAPO3 2,0%/wt. Inhibitor: BHT4 0.1%/wt. Filler:

Silanized Barium silicate glass 50%/wt.

1Bis-phenol A ethoxylate dimethacrylate
2Triethylene glycol dimethacrylate
3Phenyl bis(2,4,6-trimethylbenzoyl) phosphine.
4Dibutylhydroxytoluene.

All reagents were obtained from Sigma Aldrich.

https://doi.org/10.1371/journal.pone.0195244.t001
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Biofilm production

The discs of each material were left under UV light in a laminar flow hood for 15 minutes per

surface for decontamination. Next, each disc was placed in a well of a 24-polystyrene culture

plate, immersed in 1.5 ml of BHI (BD—Difco, Le Pont de Claix—FRA) with 1% sucrose inocu-

lated with a strain of S. mutans UA159 (ATCC1 700610™). Then, the discs were stored at

37˚C/10% CO2 for 4h, 24h, and 7 days to be submitted to the analysis of gene expression (4

and 24h), cell viability (24h) and biofilm characteristics (7 days).

Cell metabolism–XTT metabolic assay

Eight discs of C1 and C2 were used for this test. After biofilm formation on the surface of the

experimental composites, the biofilm was assessed using the colorimetric method, utilizing

2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-Carboxanilide (XTT) to mea-

sure biofilm formation inhibition. Before the assay, the XTT solution was prepared as follows:

4 mg of XTT were dissolved in 10 ml of saline solution (37˚C) supplemented with 40 μl of

Coenzyme Q0. Then, after biofilm growth for 24 hours, the composite discs were washed with

PBS solution to remove planktonic cells and the XTT solution was added. The discs were

placed in a 24-culture well plate, which was incubated at 37˚C/10% CO2 for 4 hours. After

incubation, 200 μl of the solution was transferred to microtubes and centrifuged (13,000 rpm /

4 min) to remove residual cells and the supernatant dispensed into a 96-well plate. A micro-

plate reader adjusted to 490 nm quantified the color alteration in the solution. This test was

performed in triplicate.

Biofilm characteristic analysis–confocal laser scanning microscopy (CLSM)

A qualitative/quantitative analysis of the biofilm characteristics was performed using CLSM.

Briefly, the Live/Dead Baclight bacterial viability stain (L13152) (Molecular Probes, Eugene,

OR, USA) was used. It consists of two nucleotides, SYTO 9 (stains all viable bacteria in green)

and propidium iodide (stains non-viable bacteria in red). After the 7th day of biofilm growth,

the non-adhering cells were removed by washing three times with saline solution. Live/Dead

was mixed according to the manufacturer’s instructions and one drop of the solution was

applied directly to the surface of each specimen, according to each group (n = 8). After 15 min

in dark incubation, the stain surplus was removed using an absorbent paper. Non-invasive

confocal images of the fully hydrated biofilms were immediately made using an inverted

microscope with a CLSM unit (Leica, TCS SP5 AOBS). All images obtained were processed

and analyzed by one operator, using quantitative and qualitative parameters. The quantitative

analysis was made using COMSTAT software, the parameters evaluated were: biovolume

(μm3), average thickness (μm), roughness coefficient, and surface area (μm2), as described by

De Fúcio and cols. [30]. Descriptive parameters were used for the qualitative analysis, consid-

ering the stained areas (green and red) and dark spaces.

Gene expression—RT-qPCR

Ninety discs of C1 (30), C2 (30) and CE (30) were made for the gene expression analysis. After

biofilm growth times elapsed, the discs were removed from the culture medium and trans-

ferred to tubes with 2 ml of saline solution (0.9% NaCl). Then, the tubes were placed on vortex

with 2.800rpm/10sec to detach the cells from the discs’ surface. The cells-containing solution

was transferred to 2 ml micro-tubes with screw cap and O-ring (Axigen, New York—USA).

The tubes were centrifuged (2 min, 4˚C,�16000 g) for cell pellet precipitation and the saline

solution was then discarded. The cell pellet was immediately stored at -80˚C until RNA
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purification. Cell pellet (n = 5) was obtained from biofilms formed on four discs (4h) and two

discs (24h), per group, and considered the experimental unit.

The RNA total purification was performed after breaking the frozen cells using� 0.16 g of

0.1 mm diameter zirconia beads (Biospec, Bartlesville—USA), combined with 220 μl TE buffer

on a Mini-bead beater apparatus (Biospec). For total RNA purification, the modified RNeasy

Mini Kit protocol (50) (Qiagen, Hilden—GER) was used. The purified RNA was again frozen

at -80˚C for further conversion of cDNA. The RNA was then converted to cDNA using iScript
Reverse Transcriptase1 (Bio-Rad Laboratories, Hércules—USA). Reverse transcriptase reac-

tions were prepared from a mixture containing 4 μl of iScript1, 60 ng of RNA from the sam-

ple, and water free DNase and RNase, and were incubated at 25˚C for 5 min, 42˚C for 30 min

and 85˚C for 5 min. In addition, to verify the absence of genomic DNA contamination of the

sample, an additional reaction was prepared in the absence of iScript1. The converted cDNA

was stored at -20˚C for further analysis of gene expression.

The RT-qPCR technique was performed using a specific primer for the gtfC, gtfD, vicR, covR
and gbpB genes [21]. Quantitative PCR reactions were performed on StepOne™ Real-Time

PCR Systems (Applied Biosystems, UK). From each sample, 1 μl of cDNA was placed in a

48-plate well with 9 μl of a solution, containing 3.4 μl water free RNase and DNase, 0.6 μl of

primer and 5 μl of SYBR1 Green PCR Master Mix (Applied Biosystems). Standard curves

(300, 30, 3, 0.3, and 0.03) were performed for each primer pair assay. Expression of the genes of

interest was calculated and normalized by the expression of the reference 16sRNA gene.

Statistical analysis

All data were submitted to the Kolmogorov-Smirnov test to determine the normality of the

data distribution. Data from cell metabolism, surface area, biovolume, average thickness, and

surface roughness coefficient, were submitted to Mann Whitney test and Wilcoxon post-test

(α = 0.05). For the gene expression analysis, the data obtained from the gtfC gene at 24 hours

were submitted to Kruskal-Wallis test with Student-Newman-Keus post-test (α = 0.05) for

comparison between the groups. Data obtained from the other genes were analyzed by One-

way ANOVA and Tukey test (α = 0.05) for comparison between the groups.

Results

Effect of TM-containing experimental TEGDMA composite resin

Cell metabolism—XTT. Composite containing TM in its composition (C2) provided a

significant reduction in cell metabolism (p = 0.0076) of S. mutans biofilms when compared to

composite with no TM monomer (C1). This decrease in cell metabolism is exhibited in XTT

analysis (Fig 1), whereupon C2 presented 0.582 nm (±0.041) absorbance value while C1, with

no TM monomer showed 0.634 nm (±0.030).

Quantitative analysis of the 7th-day biofilm growth—Confocal laser scanning micros-

copy (CLSM). The 7th-day biofilm growth on TM-containing composite (C2) presented sig-

nificantly lower biovolume values (p = 0.028) and average thickness (p = 0.020) compared to

C1, with no TM-containing composite. The roughness coefficient of the 7th-day biofilm

growth on composite with no TM monomer (C1) was significantly higher than for C2

(p = 0.032). There was no significant difference on the surface area (p = 0.694) of the 7th-day

biofilm growth for C1 and C2 (Table 2). Therefore, TM-containing composite provided a low

virulent S mutans biofilm.

Qualitative analysis of the 7th-day biofilm growth—Confocal laser scanning micros-

copy (CSLM). CLSM analysis evidenced that TM monomer incorporated in composite (C2),

provided a higher amount of unviable cells in the 7-day biofilm growth. Fig 2 shows
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predominant colonies of living S. mutans (green coloration) with few empty spaces (dark

areas) for composite with no TM monomer (C1). In addition, 7-day biofilm growth for C2

provided the deadest cells (red staining) with scarce viable cells (circles) and evident darker

areas (arrows) (Fig 2).

Effect of TEGDMA-containing experimental composite and a TM-

containing TEGDMA experimental composite

Gene expression—RT-qPCR. The expressions of gtfD and vicR genes were down-regu-

lated when the biofilm was formed in contact with TM monomer-containing composite (C2

group) at 4h, presenting a significant difference when compared to composite with no TM

monomer (C1) and ceramic material (CE). This results are evidenced by the transcript level

expressed in nanograms (Fig 3). On the other hand, there was no significant difference in the

expression of vicR, gtfD, gtfC, covR and gbpB genes at 4h when compared CE and C1 (Fig 3).

At 24h, the composite with TM in its composition (C2 group) down-regulated the expres-

sion of gbpB and covR genes and up-regulated the expression of the gtfC gene when compared

Fig 1. S. mutans cell metabolism (Absorbance at 490nm) after contact with experimental composites (C1 and C2).

Different capital letters represent statistically significant differences (p< 0.05). C1- Composite resin with no

antimicrobial; C2—Composite resin with antimicrobial.

https://doi.org/10.1371/journal.pone.0195244.g001

Table 2. Biovolume, average thickness, roughness and surface area values (mean and standard deviation) of the biofilm developed on restorative materials C1 and

C2 for 7 days.

Biofilm Characteristic C1 C2
Biovolume (μm3/ μm2)) 47.1 (27.8) A 17.6 (8.2) B

Average thickness (μm) 106.7 (52.1) A 44.1 (42.3) B

Roughness Coefficient 1.321 (0.51) A 0.799 (0.34) B

Surface area (μm2) 0.5343 (0.23) A 0.496 (0.14)A

Different capital letters on the same line represent statistical significant differences between C1 and C2. C1- Composite resin with no antimicrobial; C2—Composite

resin with antimicrobial

https://doi.org/10.1371/journal.pone.0195244.t002

A novel antimicrobial composite reduces Streptococcus mutans virulence

PLOS ONE | https://doi.org/10.1371/journal.pone.0195244 April 2, 2018 6 / 12

https://doi.org/10.1371/journal.pone.0195244.g001
https://doi.org/10.1371/journal.pone.0195244.t002
https://doi.org/10.1371/journal.pone.0195244


to composite with no TM monomer (C1) and ceramic material (CE). In contrast, as exhibited

at 4h analysis, no significant differences between C1 and CE groups were evidenced for any of

the genes analyzed at 24h (Fig 4).

Fig 2. Confocal microscopy images showing the S. mutans 7-day biofilm growth on the studied materials. A, B and

C: 7-day biofilm growth on C1. D, E and F: 7-day biofilm growth on C2. White arrows–voids; white circles–isle of

living cells on the dead cells mass; Magnification 4x / 0.13.

https://doi.org/10.1371/journal.pone.0195244.g002

Fig 3. Means and standard deviations of the gene expression values in transcript levels (ng) at 4h. Different capital

letters represent statistical differences between the groups for each gene analyzed individually. C1- Composite resin

with no antimicrobial; C2—Composite resin with antimicrobial; CE–Ceramic.

https://doi.org/10.1371/journal.pone.0195244.g003
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Discussion

Conventional resin composites present little or no antimicrobial activity and are prone to be

colonized by bacteria and biofilm growth. The development of antimicrobial-containing com-

posites has been considered and analyzed as a method for the control of secondary caries

[23,31,32]. This study evaluated the effect of a TEGDMA-containing composite and an experi-

mental antimicrobial resin composite on the development of S. mutans biofilm. The main

hypothesis tested was proved that a TM-containing composite modified S. mutans biofilm

characteristics and the expression of vicR, gtfD, gtfC, covR and gbpB genes. However, the sec-

ondary outcome shows that the TEGDMA-containing composite showed no influence on the

virulence of the biofilm.

Cell metabolism data and live/dead confocal images indicate that TM can cause real inter-

ference on the S. mutans biofilm growth. A significant decrease in biovolume, average thick-

ness, and roughness coefficient of the biofilm at the 7th day of biofilm growth was

demonstrated when the TM-composite (C2) was used. The changes in the biofilm structure

evaluated in this study, caused by C2, reinforce the antimicrobial capacity of triclosan, even

when chemically bonded to a methacrylate monomer. Therefore, the results are consistent

with the idea that the use of an antimicrobial monomer as part of the polymer chain has a

great perspectives for use [27].

Despite the affinity of triclosan for the wall membrane of cells [33], those biofilm structure

modifications can be associated with the effect of C2 on the expression of some genes, such as

vicR, gtfD, gtfC, covR and gbpB, since C1 showed no significant alterations on those gene

expressions, similar to CE. This study showed a significant reduction on vicR and gtfD expres-

sion at 4h for C2 when compared to C1 and CE. It is likely that the expression profile of those

genes was due to gtfD and its relationship with vicR. This association, between vicR and gtfD,

was previously reported in UA159 strains[20], once changes in the histidine kinase sensor of

vicR resulted in down-regulation of gtfD expression. The decreased expression values of these

genes may indicate a reduction in vicR-mediated cellular functions and virulence factors, since

vicR regulates several functions of S. mutans [19,21]. Additionally, the reduction in gtfD, which

regulates the soluble glucan synthesis [34], may reduce the quantity of this polysaccharide in

the biofilm. However, this fact was not evaluated in this study.

Fig 4. Means and standard deviations of the gene expression values in transcript levels (ng) at 24h. Different

capital letters represent statistical differences between the groups for each gene analyzed individually. C1- Composite

resin with no antimicrobial; C2—Composite resin with antimicrobial; CE–Ceramic.

https://doi.org/10.1371/journal.pone.0195244.g004
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On the other hand, the expression of gtfC, gbpB and covR in S. mutans biofilms for C2 only

were changed at 24h. While covR expression values exhibited reduction, the gtfC gene pre-

sented increased expression values for the TM group. This relation between covR activity and

the expression of gtfC is according to the results found by Biswas and Biswas [17]. Therefore,

this result, might have occurred because covR is an inhibitory regulator of the S. mutans viru-

lence [17,21], which also acts on the expression of glucosyltransferases genes.

The increase on gtfC expression may indicate an elevation in glucan synthesis, but does not

necessarily indicate an increase in virulence, since covR expression was decreased. The covR
gene regulates several other virulence factors [17,35], implying alterations of the qualitative

and quantitative characteristics of the biofilm, as observed in this study. Thus, a decrease in

covR expression might have provided physiological alterations for the bacteria, which were evi-

denced by the reduction of viable cells (Fig 2) and the differences between C1 and C2 for bio-

film roughness, thickness and biovolume (Table 2). Similar results for biofilm characteristics

were found by De Fúcio and cols. [30], who showed higher roughness surface, thickness, and

number of microcolonies over ceramic and ordinary composite resin discs when compared to

a glass ionomer cement. In addition, our research group showed that glass ionomer cement

plays some influence on the cellular activity, which was quite similar to the antimicrobial com-

posite resin (unpublished results).
TM also caused a significant reduction in expression of the gbpB gene at 24h, which is

clearly observed when C2 is compared to C1 and CE. This result may be related with the role

that gbpB apparently plays in cell membrane biosynthesis [18,19]. Those findings reinforce the

action of TM on S. mutans, since it is known that triclosan causes damaging effects on the cell

membrane (Fig 2D, 2E and 2F). The gbpB reduction may decrease cellular co-aggregation fac-

tors, which contribute to the biofilm maturation process, since glucan-binding proteins work

as an aggregation cofactor with glucosyltransferases.

The development of primary or secondary dental caries depends on a biofilm behaving as

an organized microbial community [36]. Since S. mutans is one of the main agents in the cari-

ous process, the ability of the TM-composite to interfere with the biofilm by modifying the S.

mutans gene expression (vicR, gtfD, gtfC, covR and gbpB), decreasing cell viability, and provid-

ing biofilm characteristics changes (roughness, thickness average, and biovolume decrease),

can be an important tool for secondary caries control. Based on that, further in situ and in vivo
studies should be conducted to verify that association.

In addition to the antibacterial activity of TM, a secondary outcome of this study was the

effect of regular resin composite compounds on S. mutans biofilm. The composite without TM

(C1) was unable to change the expression values of the analyzed genes or interfere with cell via-

bility. This may indicate that by-products eluted from composites are below the minimum

amount needed to cause changes to biofilm cells, which was reported by Kawai and Tsuchitani

[6], and possibly closer to those reported by Polydorou and cols. [37]. The changes in bacteria

are dependent of factors capable of causing changes in releasing rates of by-products, such as

the presence of a filler, other matrix components and monomer ratios [38]. Although this

study did not evaluate the amount of by-products eluted from the materials, the presence of

BAPO as a photoinitiator may have significantly contributed to this reduction, as it allows a

reduction in the amount of unconverted monomers. Therefore, BAPO would allow the forma-

tion of a more effective polymerization [39].

TM may play an important role in reducing the effects of the main agents involved in the

caries processes, causing changes to bacteria at cellular and molecular levels, suggesting the

real possibility of using an antimicrobial monomer in preventive and restorative dentistry.
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Conclusion

Based on the results obtained in this study, it can be concluded that:

TM-containing composite:

a. decreased cell viability and changed the biofilm architecture when compared to a com-

posite without TM;

b. did not change the biofilm area, but decreased the average thickness, biovolume, and

roughness surface coefficient of the biofilm at 7 days, when compared to a composite

without TM;

c. modified vicR, gtfD at 4-h and gtfC, covR and gbpB genes expression at 24h, decreasing

the virulence biofilm characteristics.

Composite without TM provided no modification on vicR, gtfD, gtfC, covR and gbpB at

expression at 4h and 24h.
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