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Abstract

Globally, the number of dengue cases has been on the increase since 1990 and this trend

has also been found in Brazil and its most populated city—São Paulo. Surveillance systems

based on predictions allow for timely decision making processes, and in turn, timely and effi-

cient interventions to reduce the burden of the disease. We conducted a comparative study

of dengue predictions in São Paulo city to test the performance of trained seasonal autore-

gressive integrated moving average models, generalized additive models and artificial neu-

ral networks. We also used a naïve model as a benchmark. A generalized additive model

with lags of the number of cases and meteorological variables had the best performance,

predicted epidemics of unprecedented magnitude and its performance was 3.16 times

higher than the benchmark and 1.47 higher that the next best performing model. The predic-

tive models captured the seasonal patterns but differed in their capacity to anticipate large

epidemics and all outperformed the benchmark. In addition to be able to predict epidemics

of unprecedented magnitude, the best model had computational advantages, since its train-

ing and tuning was straightforward and required seconds or at most few minutes. These are

desired characteristics to provide timely results for decision makers. However, it should be

noted that predictions are made just one month ahead and this is a limitation that future stud-

ies could try to reduce.

Introduction

Globally, the number of cases has been on the increase since 1990 and this trend has also been

found in Brazil and its most populated city—São Paulo [1]. Dengue is one of the most impor-

tant arthropod-borne viral infection of humans [2]. Its estimated burden is concentrated in

Asia and the Americas [3]. In 2015, Brazil accounted for 68% of probable cases in the Americas

[4].
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Surveillance systems based on predictions allow for timely decision making processes, and

in turn, timely and efficient interventions to reduce the burden of the disease [5]. But this only

happens when predictions are accurate (do not have systematic errors) and precise (the magni-

tude of random errors is compatible with the intended application), something that must be

evaluated instead of supposed. Google Flu Trends [6] is a popular example of both an effort to

improve surveillance systems with predictions and of the problems caused by inaccurate pre-

dictions [7].

The complexity of dengue dynamics challenges the development of predicting models.

However, advances and availability of predictive models, computational capabilities and the

incorporation of key predictors have provided necessary tools to tackle this problem. Further-

more, novel data streams and frameworks to use them might also enhance the capability of

dengue surveillance systems [8,9].

Meteorological variables influence vector dynamics, agent development, and mosquito/

human interactions [10]. Variables such as temperature, precipitation and relative humidity,

as well as lagged values of dengue cases, have been reported as key predictors [3,11–13]. As for

predictive models, choices adopted in previous studies include seasonal autoregressive inte-

grated moving average models (SARIMA), generalized additive models (GAM), artificial neu-

ral networks (ANN) and spatiotemporal Bayesian models [11–18].

The use of complex predictive models is justified if they improve the predictive perfor-

mance relative to simpler benchmarks. These improvements have been shown for dengue

prediction using categorical levels (low, medium, high) [19]. For continuous predictions, a

simple benchmark that can be used to compare the performance of complex models is the

naïve model, which predict the value of a sequence at time t as being equal to the value of that

sequence at time t-1; despite its simplicity, it performs well for many economic and financial

time series [20]. There is little point in adopting a complex model if it does not outperform a

simpler benchmark or if its gains in prediction performance are minimal and do not outweigh

the costs associated with the forecasting process (data acquisition, implementation, run time

and reproducibility).

In recent years, ANN have won contests in pattern recognition and machine learning [21].

Furthermore, the availability of advanced open source libraries and the increasing power of

personal computers allow the use of ANN in a wide range of domains. Dengue forecasting is

one domain that can exploit the advantages of ANN and indeed, some researches have already

started exploring this potential [14,15]. There are many types of ANN, such as the long short-

term memory recurrent neural networks (LSTM), which have emerged as an effective and scal-

able model for several learning problems related to sequential data [22], as is the case of time

series.

Since surveillance systems will benefit from a improved knowledge of the relative perfor-

mance of predictive models, we proposed to carry out a comparative study of dengue predic-

tion in São Paulo city; using the SARIMA, GAM, ANN (including the LSTM) and naïve

models.

Methods

This section is subdivided in twelve subsections. After describing the Data sources and their

content, we presented the procedures for Data partition, Exploratory analysis and Predictor

selection that preceded model training. Each one of the next five subsections (Naïve model,

GAM, ANN, SARIMA, Ensemble model) briefly contextualizes and describes the models.

Then, we described the Predictive performance and ended reporting the used Software and

presenting the Ethics statement.

Dengue forecasting in São Paulo

PLOS ONE | https://doi.org/10.1371/journal.pone.0195065 April 2, 2018 2 / 12

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0195065


Data

We obtained dengue data from the Epidemiological Surveillance Center of São Paulo State

Department of Health (Centro de Vigilância Epidemiológica da Secretaria de Estado da

Saúde). Raw data were in files, one per year, from January 2000 to April 2016. Each file had the

date (daily resolution), the city and the classification of each notification. We excluded the

cases with a “rule out” classification, which according to the Brazilian Ministry of Health, are

suspect cases with negative laboratory result (two negative results from paired-IgM samples,

properly collected and transported), positive laboratory result for another disease, or without

laboratory result but with clinical and epidemiological findings compatible with other disease

[23].

Our source of meteorological variables was the National Institute of Meteorology (Instituto

Nacional de Meteorologia) [24]. The monthly series also spanned from January 2000 to April

2016 and included temperature (minimum, mean and maximum), precipitation and relative

humidity (S1 Fig).

Data partition

Models can have good predictive performance in the data used to train them but not necessar-

ily in new data. To avoid this issue and find models with good predictive performance in new

data, data can be partitioned to use one set to train the models, other to tune model parameters

(for parameters not learned from data, find the values that improve predictive performance),

and other to test the predictive performance in new data [25]. For tuning of parameters, cross-

validation (CV) is a resampling procedure that divides training data to use a subset for model

training itself, and the remaining subset to calculate the predictive performance; the procedure

is repeated multiple times to obtained a summarized measure of predictive performance [25].

In the case of time series, the procedure must preserve the time order and this implies that the

subset used to calculate the predictive performance must be more recent than the subset used

for training, This particularity of time series reduces the number of possible resamples, and the

more times the procedure is repeated, the smaller the training subset. In our case, the training

set comprised the monthly series between January 2000 and December 2014, while the remain-

ing was the test set. The training set was further partitioned to create time series cross-valida-

tion (CV) subsets for tuning parameters. Each CV subset, preserving the time order, had a

training subset with 165 months and a validation subset with the following 6 months. The first

CV subtest started in January 2000, the second in February 2000 and so on, until the seventh,

which began in July 2000 and ended in December 2014. We did not use the second semester

for validation because it had few cases and small variability. We did not use more subsets to

avoid smaller training subsets.

Exploratory analysis and preprocessing

Two months had missing mean and maximum temperatures, so we imputed them by linear

interpolation. The maximum correlation between the number of cases (prediction target) and

lagged values—of the number of cases and the meteorological variables—always occurred

among the first three lags (Table 1), so we restricted the subsequent training of models to these

lags in order to avoid extra computational costs added by variables with small predictive

potential.

We standardized all predictors, which were lags (up to third order) of the number of cases

and the meteorological variables. For the SARIMA, we also applied a logarithmic transforma-

tion to the target. For the GAM, the logarithmic transformation was part of the model itself
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(see below). For the ANN, we did not apply this transformation because it did not change the

predictive performance in exploratory trainings.

Predictor selection

In the GAM and the SARIMA models, we selected a subset of predictors. Since the different

measures of temperature were highly correlated and the correlation of their average (among

the first three lags) with the target was almost equal (mean T = 29.98%, maximum T = 29.58%,

minimum T = 28.12%) we used only the mean temperature to avoid high collinearity. In the

GAM, the candidate subsets of predictors were given by all possible combinations that had the

lag-1 number of cases, and for the other predictors (mean temperature, precipitation and rela-

tive humidity), no more than one of the first three lags. For example, the subset {lag-1 number

of cases, lag-1 precipitation, lag-3 precipitation} was not considered because it had more than

one lag of precipitation. Based on this, the smallest subset had only the lag-1 of the number of

cases and the largest had the lag-1 of the number of cases plus one of the first 3 lags of the

remaining predictors (mean temperature, precipitation and relative humidity). A total of 64

subsets were tested. For the SARIMA, the approach was the same but without explicitly includ-

ing the lagged value of the number of cases as a predictor (63 subsets were tested).

Naïve model

The naïve model was the benchmark and was given by the first lag of the raw time series. Thus,

this model predicts the number of cases at time t as t-1.

GAM

A GAM is a generalized linear model in which the linear predictor is composed by smooth

functions applied to predictors [26]. To select the best GAM, we first selected the subset of pre-

dictors that minimized the CV root mean square error (RMSE) on the entire training set. To

achieve this, we used a Poisson likelihood and cubic splines with 3 knots on all predictors, for

all the tested subsets of predictors. Then, for the best subset of predictors, we trained equiva-

lent models with negative binomial and Gaussian likelihoods. As none of these distributions

minimized the CV RMSE, we proceeded with a Poisson likelihood, to tune the type of penal-

ized spline (shrinkage cubic or cubic) and the upper limit on the degrees of freedom (df) asso-

ciated with the spline (k = df-1 = {3,4,5,6,78}) using the CV RMSE. The general formula of

GAM with Poisson likelihood was:

yi � PoissonðziÞ

logðziÞ ¼ b0 þ
X

sjðxijkÞ;

Table 1. Correlation between the number of cases and lags 1–3 of six predictors.

Predictor (lagged) Lag 1 Lag 2 Lag 3

Cases 0.680 0.240 0.048

Precipitation 0.101 0.208 0.239

Maximum temperature 0.180 0.334 0.374

Mean temperature 0.207 0.335 0.358

Minimum temperature 0.219 0.315 0.310

Relative humidity 0.062 -0.071 -0.101

https://doi.org/10.1371/journal.pone.0195065.t001
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where yi was the observation i, zi is the linear predictor for the observation i, b0 is the intercept,

sj is the spline for predictor xj and k is the number of knots.

ANN

ANN consist of many simple connected processors called neurons or units, linked by directed

connections [21,27]. Units are organized in layers and any ANN has at least an input layer acti-

vated by data, and an output layer that calculates values used for prediction. ANN can have

additional hidden layers between the input and output layers [27]. When a unit is activated, it

outputs a value computed from inputs. While units from the input layer get activated by data,

units from hidden and output layers get activated by weighted outputs from connected and

previously active units [21]. Different structures of units and their connections give rise to dif-

ferent types of ANN. The training of ANN is commonly based on the backpropagation algo-

rithm [28], whereby an optimizer minimizes the loss of an objective function by updating the

weights in the opposite direction of the gradient of the objective function. The optimization

occurs iteratively over dataset observations, either individually or in batches, and the entire

dataset is typically iterated many times (epochs). During training, some units can be randomly

dropped out to suppress their contribution to the learning of weights. This technique, knowns

as dropout regularization, helps to reduce overfitting [21].

We trained two types of artificial neural networks: the multilayer perceptrons (MLP) and

the long-short term recurrent neural networks (LSTM). For both types, the configuration was

always as presented in Table 2, with the topologies, predictors and tuned parameters as pre-

sented in Table 3. To tune the parameters, we used the CV MSE. To check the convergence,

we plotted the loss against the number of epochs.

SARIMA

A SARIMA is a linear predictor composed by a non-seasonal autoregressive polynomial (AR)

of order p, a non-seasonal difference of order d, a non-seasonal moving average (MA) of order

q, a seasonal (AR) of order P, a seasonal difference of order D, and a seasonal (MA) of order Q
[20]. Lettingm be the number of periods per seasons, SARIMA = (p,d,q)(P,D,Q)m. Letting

Table 2. Configuration of artificial neural networks.

Epochs 300

Weight initialization Uniform distribution

Activation of hidden layers Rectifier linear units

Optimizer Adaptive moment estimation (Adam)

https://doi.org/10.1371/journal.pone.0195065.t002

Table 3. Topology and tuned parameters of trained artificial neural networks.

Topology Tuned parameters

Type Predictors Hidden layer 1 Hidden layer 2 Batch size DR

MLP C 10 5 10, 20, 50 0, 0.2, 0.4

MLP C, T, P, RH (lags 1–3) 20 10 10, 20, 50 0, 0.2, 0.4

LSTM C 10 5 10, 20, 50 0, 0.2, 0.4

LSTM C, T, P, RH (lags 1–3) 20 10 10, 20, 50 0, 0.2, 0.4

MLP: multilayer perceptron, LSTM: long short-term memory recurrent neural networks, C: number of cases, T: temperature (maximum, mean and minimum), P:

precipitation, RH: relative humidity, DR: dropout regularization.

https://doi.org/10.1371/journal.pone.0195065.t003
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B = yt/yt-1,where yt and yt-1 are the number of cases at time t and t-1 respectively, SARIMA

for monthly dengue cases can be represented as:

ð1 � F1B � � � � � FpB
pÞð1 � F1B

12 � � � � � FPB
12PÞð1 � BÞdð1 � B12Þ

Dyt
¼ cþ ð1 � Y1B � � � � � YqB

qÞð1 � Y1B
12 � � � � � YQB

12QÞet;

where F andΘ are coefficients and e is the error.

After a first order non-seasonal differentiation (d = 1 and D = 0), we tested all possible com-

binations of p, q, P and Q, with each of this terms taking a value between 1 and 4, Then we

selected the combination with the lowest corrected Akaike’s Information Criterion (AICc)

[20].

Ensemble model

The ensemble model was simply the average prediction of the best GAM, ANN and SARIMA.

Predictive performance

The RMSE in the test set was the measure of predictive performance for the best GAM, ANN

and SARIMA, and the naïve model. The RMSE was defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
ðyi � ŷiÞ

2

� �

;

s

where n is the number of observations, y is the observed value, and ŷ is the predicted value. In

addition, these RMSE were divided by the RMSE of the naïve model to obtain a relative mea-

sure of performance.

Software

We used R 3.4.0 and its packages mgcv 1.8–17, forecast 8.0, caret 6.0–76, ggplot2 2.2.1 and

gridExtra 2.2.1. We also used Python 3.5.1 and its packages sklearn 0.17.1, pandas 0.19.2 and

keras 1.0.6 with Theano as backend.

Ethics statement

This research was approved by the Comtiê de ética em Pesquisa—Faculdade de Saúde

Pública—Universidade de São Paulo. Approval number: 1.687.650. All patient data analyzed

were anonymized.

Results

Table 4 shows the best GAM, ANN, SARIMA and their parametrization. The lowest RMSE in

the test set was achieved by the GAM, followed by the ensemble, the MLP, the SARIMA and

the naïve model (Table 5) (the LSTM had a RMSE = 5230. It is not included it in Tables 4 and

5 because it was not the best ANN). The GAM correctly predicted large epidemics, especially

in 2014 and 2015, which made it more precise (lowest error) than the other models (Figs 1 and

2). According to the GAM, the predicted number of cases increased when any of the predictors

increased; in the case of the lagged number of cases, this pattern occurred until it increased

approximately 3.5 standard deviations, then, the predicted number of cases decreased slightly

(S2 Fig). The number of epochs was enough for the convergence of the MLP (S3 Fig).
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Discussion

The predictive models captured the seasonal patterns but differed in their capacity to antici-

pate large epidemics and all outperformed the benchmark in predicting the number of dengue

cases one month ahead. Large epidemics occurred between March and May, and in 2014 and

2015, they were markedly different than surrounding months. As a result, the naïve model

(benchmark) produced errors on the epidemic peaks and their subsequent month, with a mag-

nitude that preclude its practical use.

Incorporating meteorological variables improved the predictive performance of all models,

but the best GAM, SARIMA and ANN differed in the final set of predictors. This difference

was in part induced because we did not test all candidate sets in the three types of models

Table 5. Root mean squared errors (RMSE) of predictive models of dengue cases.

Model RMSE� RMSE / RMSEnaïve

GAM 2152 0.316

Ensemble 3164 0.465

MLP 4422 0.650

SARIMA 5984 0.879

Naïve 6806 1.000

� Rounded values.

https://doi.org/10.1371/journal.pone.0195065.t005

Table 4. Best generalized additive model (GAM), artificial neural network (ANN) and autoregressive integrated

moving average model (SARIMA).

Model Description

GAM Likelihood: Poisson

Spline: Shrinkage cubic

Knots: 3

Predictors: Clag1, Tmaxlag2, Plag1, RHlag1

ANN Epochs: 300

Weights initialization: Uniform distribution

Activation Rectifier

Optimizer: Adaptive moment estimation

Type: Multilayer perceptron

Units in hidden layer 1: 20

Units in hidden layer 2: 10

Batch size: 50

Dropout regularization: 0

Predictors: Clag1-3, Tlag1-3, Plag1-3, RHlag1-3

SARIMA Transformation: Natural logarithm

Non-seasonal autoregressive order: 0

Non-seasonal difference order: 1

Non-seasonal moving average order: 3

Seasonal autoregressive order: 0

Seasonal difference order: 0

Seasonal moving average order: 1

C: number of cases, T: temperature (maximum, mean and minimum), Tmax: maximum temperature, P:

precipitation and RH: relative humidity.

https://doi.org/10.1371/journal.pone.0195065.t004
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Fig 1. Observed and predicted number of dengue cases in training and test data from São Paulo, Brazil, 2000–2016. Predictions were made by

models presented in Table 4.

https://doi.org/10.1371/journal.pone.0195065.g001

Fig 2. Observed and predicted number of dengue cases in training and test data from São Paulo, Brazil, 2000–2016. Predictions were made by the

generalized additive model presented in Table 4.

https://doi.org/10.1371/journal.pone.0195065.g002
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owing to their particularities. In the GAM and ANN, it made sense to include lagged values of

the number of cases as regressors but in SARIMA, there is no point including this, given the

autoregressive and moving average terms. Collinearity may produce strange results in the

GAM and SARIMA, and therefore, it is convenient to consider a selection procedure for pre-

dictors. On the other hand, the ANN are less sensitive to collinearity because they create linear

combinations of the initial inputs to model the target.

The restriction of the potential predictors to the first three lags—the more correlated with

the target—was intended to reduce collinearity and overfitting (unnecessary complexity). For

the same reason, the GAM and SARIMA were restricted to include at most one of the first

three lags of each predictor. We used all the predictors and its first three lags in the ANN but

we also tested models with only the first lag of the number of cases to assess the possibility of

better predictions with simpler models. Between these two extremes, we could have assessed

the combinations considered for the GAM (which are a subset of all possible combinations),

however, that would amount to fitting 1152 models (64 combinations of predictors � 9 combi-

nations of tuning parameters � 2 types of ANN) instead of 36 (2 combinations of predictors �

9 combinations of tuning parameters � 2 types of ANN) for cross-validation. Taking into

account the delay to collect and prepare the data and the computational cost of fitting thou-

sands of ANN, predictions may take to long to support timely decisions.

Temperature, relative humidity and precipitation composed the set of predictors of the best

GAM, SARIMA and ANN, restating the utility of these variables. Our decision to use the

mean temperature contrasted with the use of the minimum or maximum temperatures

[11,12,29]; however, this is not new [13]. Furthermore, the correlation of each measure of tem-

perature with the target was almost the same.

The best GAM predicted the peaks of 2014 and 2015 better than the other models even

when the autocorrelation of its residuals showed that some information were left over. Models

for which the maximum number of degrees of freedom was set to more than 2 resulted in

uncorrelated errors but did not improve the RMSE neither in the training set nor in the test

set.

In the training of the ANN, we chose the adaptive moment estimation optimizer because it

is computationally efficient, has minimum memory requirements, works well in practice and

compares favorably with other stochastic optimization methods [30]. This optimizer computes

adaptive learning rates for each parameter, which allowed us to omit the tuning of the learning

rate and the momentum. The rectifier linear units for all layers except the output, was a choice

to improve the performance [31]. The output layers did not have activation functions because

the aim was to predict untransformed numerical values. The number of epochs was enough to

achieve convergence as indicated by the stabilization of the loss across iterations (S2 Fig). The

first layer always had more units than predictors, in order to have sufficient flexibility to cap-

ture nonlinearities in the data [26]. Since this could lead to overfitting, we tuned the dropout

regularization [26].

ANN are typically trained with large datasets, which allow the estimation of large number

of parameters. In non systematic search for better models we trained more complex ANN

(more layers and more units per layer), which did not improve the predictive performance.

Perhaps, the lack of data to build more complex ANN explained the poorer performance rela-

tive to the GAM, and perhaps, this also explains the improved performance of the MLP relative

to the LSTM.

Regarding the SARIMA, graphical exploration showed that logarithmic transformation sta-

bilized the variability, and nonseasonal differentiation improved the stationarity of the time

series. The final model had uncorrelated errors and the Ljung-Box test supported to the
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conclusion of insignificant remaining autocorrelation. Nonetheless, the peaks of 2014 and

2015 were predicted one month ahead relative to real peaks, resulting in large errors.

The predicted event was the monthly number of cases among residents of São Paulo

city. Restricting cases to residents of São Paulo city is not necessarily equivalent to autoch-

thonous cases as some residents may have been infected outside the city while some autoch-

thonous cases may have gone out and notified in other cities. The reason not to have used

autochthonous cases was simply the lack of reliable data regarding the probable place of

infection. The city of notification would have been an alternative target but official reports

are based on resident cases. Furthermore, we decided to build models compatible with exist-

ing data.

The GAM had the best performance and included lags of the number of cases and meteoro-

logical variables. It predicted epidemics of unprecedented magnitude and can be updated and

trained in seconds or few minutes. Furthermore, the meteorological covariates for São Paulo

city are updated daily and can be accessed at no charge. This means that the model is suitable

for real application to support timely decisions. The model can be trained with data from

other cities, but as meteorological stations are not available in every city of São Paulo State,

other sources of data must be found.
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