
RESEARCH ARTICLE

Spatial genetic structure within populations

and management implications of the South

American species Acacia aroma (Fabaceae)

Carolina Pometti1,2*, Cecilia Bessega1,2, Ana Cialdella3, Mauricio Ewens4,

Beatriz Saidman1,2, Juan Vilardi1,2

1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Ecologı́a,
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Abstract

The identification of factors that structure intraspecific diversity is of particular interest for

biological conservation and restoration ecology. All rangelands in Argentina are currently

experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose

species widely distributed throughout this country. In this study, we used the AFLP tech-

nique to study genetic diversity, population genetic structure, and fine-scale spatial genetic

structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci,

the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL =

62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The

analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland

analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE

but dividing one population into two groups. When studying SGS, significant structure was

detected in 3 of 6 populations. The neighbourhood size in these populations ranged from

15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective

population density and disturbance level and ranged from 45 to 864 m. The combined

results suggest that a sampling strategy, which aims to maintain a considerable part of the

variability contained in natural populations sampled here, would include at least 3 units

defined by the clusters analyses that exhibit particular genetic properties. Moreover, the

current SGS analysis suggests that within the wider management units/provinces, seed col-

lection from A. aroma should target trees separated by a minimum distance of 50 m but pref-

erably 150 m to reduce genetic relatedness among seeds from different trees.
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Introduction

The spatial structure of the genomic variation among natural populations constitutes a central

topic in evolutionary biology. The structure is primarily influenced by the population density,

breeding system, and environmental heterogeneity, among other factors. For plants, the ability

to extend the geographical distribution and maintain genetic variability within populations

depends on the gene flow mediated by seed movement and pollen dispersal [1, 2]. These mech-

anisms influence the structuration of genetic diversity within and between populations, which

is usually referred to as spatial genetic structure (SGS) [3]. The spatial distribution of individu-

als within a population is a considerable determinant of population genetic structure, and this

is affected by dispersal processes. Consequently, studying the causes of SGS in plant species, in

particular in Acacia aroma due to its ecological and economic importance in South America,

is useful in conservation and management strategies for maintaining genetic diversity, particu-

larly in stages of rapid habitat degradation [4].

Habitat fragmentation and degradation may reduce the size and increase the spatial isola-

tion of plant populations. This could lead to increased random genetic drift, elevated inbreed-

ing and reduced gene flow [4, 5, 6]. Therefore, when habitat degradation is occurring, it is

important to measure baseline SGS to inform management decisions aimed at maintaining

genetic variation [7].

Acacia s.l. is the second largest genus in the family Leguminosae (Fabaceae) and currently

comprises more than 1,450 species in three subgenera. Additionally, in many dryland areas,

Acacia s.l. is the dominant shrub or tree on which humans and animals depend, for example A.

nilotica in Africa, A. farnesiana in Mexico, and A. aroma in Argentina, Bolivia and Peru [8].

Acacia aroma Gillies ex Hook. & Arn. is an ecologically and economically valuable species fac-

ing considerable habitat degradation and is well distributed throughout the Chaco Region,

where it is commonly known as “aromito” or “tusca”. This species is an outcrosser; it is polli-

nated by bees [9], and its seeds are dispersed by native mammals, livestock, goats and horses

[10]. The deterioration of landscapes in Argentina began two centuries ago, and although the

human population was very small, overgrazing without regard for environmental impact was

standard practice. The ecosystems were fragile and prone to extensive damage, and conse-

quently, Argentine rangelands underwent desertification. The Chaco Region in Northwest

Argentina experienced severe forest exploitation and overgrazing. Cattle production progres-

sively expanded in this area, and due to overgrazing, resulted in a shift from grasses to shrubs

and saplings according to the availability. Later, goats replaced cattle as they were able to eat

almost any plant, thereby removing the community from the climax stage. Currently in this

region, some Acacia s.l. species occur together with other legumes, and they provide pods for

forage, lumber and medicinal products [11].

A. aroma grows as a tree or shrub 4–6 m in height, which is economically and ecologically

important because of multiple uses extending from its roots to its pollen. From an ecological

point of view, the roots are good nitrogen fixers, and the fruits and leaves provide forage for

cattle and goats. Economically, the fruits and bark are rich in tannins, the flowers are useful in

the perfume industry, the seeds have medicinal uses and the pollen is used in honey produc-

tion [11]. Currently, there are few studies on population structure and genetic diversity in nat-

ural populations of A. aroma.

Thus, our main objectives are to analyse the genetic diversity and structure and characterize

fine-scale spatial genetic structure (SGS) in five natural populations and a remnant of A.

aroma in the Chaco Biogeographical Region in Northwest Argentina, each with different levels

of disturbance. The results of this study can be used to facilitate the sustainable management

of A. aroma, and this methodology can be extended to other Acacia species.
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Materials and methods

Plant material

Young, fully grown, healthy leaves of Acacia aroma plants were collected in the Chaco Bio-

geographical Region in Northwest Argentina (Table 1 and Fig 1) and maintained in bags with

silica gel prior to DNA extraction. A total of six sites were sampled, each with different levels

of disturbance. No specific permissions were required in the field locations where samples

were taken, as they did not involve endangered or protected species and were not on private

lands. The number of sampled individuals ranged from 20 to 50 adults per site. Of these indi-

viduals, 170 (95%) yielded clear amplifications allowing for population analysis (Table 1). The

sampling strategy used here covered between 70 and 100% of the adult individuals at each site,

due to the small size of the populations. The population of Lavalle (LA) is the most degraded

from anthropogenic activities, and currently, almost all of the area is deforested; Quimilı́ (QU)

is located in a highly disturbed area, and its distribution is patchy; Tapia (TA) is a remnant of

only 20 individuals, surrounded by soy plantations; Robles (RO) extends on both sides of a

road impacted by a high level of traffic on this route; and San José (SJ) and Mili (MI) are the

most pristine populations among the sampled sites.

For each sampled tree, the spatial coordinates (altitude, latitude, and longitude) were

recorded using a GPS device (Garmim1 eTrex).

The representative vouchers of each sampled tree were deposited at the SI Herbarium, Insti-

tuto de Botánica Darwinion, San Isidro, Buenos Aires, Argentina.

AFLP methods and data analysis

DNA extraction. The DNA of young leaves was extracted with the DNeasy Plant Kit

(QIAGEN Inc., Valencia, California, USA), following the manufacturer’s instructions. The

DNA was stored at -20˚C.

The AFLP assay was performed as described by Vos et al. [12], following the steps detailed

in Pometti et al. [13]. Specifically, for the present work on selective amplification, four primer

combinations were chosen: E + AAC/M + CTT (C2), E + AGG/M + CAG (C3), E + AAC/M +

CAA (C4) and E +AAG/M + CAA (C5). In all cases, primers M + 3 were labelled with the fluo-

rescent dye 6-FAM.

Data scoring and analysis. Each AFLP band was considered a single biallelic locus with

an amplifiable (dominant) allele, scored (1), and a null (recessive) allele, scored (0).

The Bayesian likelihood method implemented in the program BAYESCAN v2.1 [14] was

utilized to identify the existence of variants with non-neutral divergence among the six popula-

tions. The burn-in period was 50,000, the thinning interval was 10, the number of iterations

was 100,000, the number of pilot runs was 20 and the length of each pilot run was 5,000.

Table 1. Populations of Acacia aroma sampled in this study and the summary of genetic diversity based on 401 neutral AFLP loci. N = sample size amplified with

the AFLP technique; PPL = percentage of polymorphic loci; HE = genetic diversity equivalent to expected heterozygosity under panmixia; S.E. (HE) = standard error of HE.

Population Population code Longitude (W) Latitude (S) N PLP (%) HE S.E.(HE)

Lavalle LA 65˚ 2043.30" 28˚ 9039.70" 50 60.3 0.21 0.01

Mili MI 63˚59031.98" 27˚56031.50" 20 60.6 0.21 0.01

Quimilı́ QU 62˚38026.04" 27˚44022.38" 50 67.1 0.23 0.01

Robles RO 63˚58059.76" 28˚ 3012.78" 22 65.8 0.21 0.01

San José SJ 63˚49054.90" 27˚52052.92" 17 62.3 0.24 0.01

Tapia TA 65˚1709.30" 26˚35042.90" 11 56.4 0.18 0.01

https://doi.org/10.1371/journal.pone.0192107.t001
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Therefore, all genetic diversity and population structure analyses were carried out on the set of

putatively neutral loci.

To estimate the allele frequencies, the software AFLP-SURV [15] was employed using the

Bayesian method with non-uniform prior distribution of allele frequencies, as described by

Zhivotovsky [16], following Lynch and Milligan’s [17] approach. Nei’s [18] genetic diversity

HE and pairwise Nei’s [19] genetic distances between populations were also estimated using

the software AFLP-SURV [15].

Fig 1. Map of Argentina showing the region and amplified zones where populations of A. aroma were sampled.

Population abbreviations: LA: Lavalle, MI: Mili, QU: Quimilı́, RO: Robles, SJ: San José, TA: Tapia. Base maps were obtained

from http://viewer.nationalmap.gov/viewer/ and http://eros.usgs.gov/.

https://doi.org/10.1371/journal.pone.0192107.g001
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To estimate the distribution of genetic diversity, the analysis of molecular variance

(AMOVA) was assessed by considering within-population and between-population compo-

nents. The decomposition of variance by AMOVA was conducted following Excoffier et al.

[20] while using the matrix approximations from Dyer et al. [21] with the software Genetic-

Studio [22]. Non-hierarchical Wright’s [23] FST, was estimated with the package HierFstat
[24, 25]. The significance of this estimate was obtained through a G test based on 5000

permutations.

To assess isolation by distance, a Mantel test was performed using the function “mantel.

randtest” from the ade4 package [25, 26], by testing the relationship between pairwise Nei´s

[19] and geographic distances.

To identify the population genetic structure in the populations of A. aroma, two Bayesian

model-based cluster analyses were contrasted: STRUCTURE [27] and Geneland [28]. The

rationale for comparing these methods is that they might yield different results because they

use different information (the former does not use geographical coordinates, whereas the latter

does) and produce different visualizations of the putative distribution of the clusters detected.

First, STRUCTURE version 2.3.4 [27] was used with a burn-in period and Markov chain

Monte Carlo (MCMC) repetitions set to 50,000 and 100,000, respectively. The admixture

model with correlated allele frequencies was selected; K was set at 1–8, and K values were aver-

aged across 10 iterations. Using the rate of change in the log likelihood, the ad hoc statistic ΔK
described by Evanno et al. [29] was estimated using STRUCTURE HARVESTER software

[30]. The results from STRUCTURE were edited with the software CLUMPP 1.1.2 [31] and

Distruct 1.1 [32] to obtain the plot.

The second method relied on the spatial cluster model implemented in the Geneland pack-

age [28] of the program R [25]. Following the user’s manual recommendations, the Markov

chain Monte Carlo (MCMC) repetitions were set to 100,000, the thinning was set to 100 and

the burn-in period was set to 100 (we eliminated the first 100 iterations when the curve was

not constant); the number of groups (K) to be tested was set from 1–7. Each individual was

assigned to one of K populations (1� K� 7) based on its multilocus genotypes and spatial

coordinates. To confirm that the run was long enough, we obtained 10 different runs and com-

pared the parameter estimates (K, individual population membership, maps). The best result

was chosen based on the highest average posterior density.

To analyse the fine-scale spatial genetic structure (SGS), the approach described by Hardy

[33] was utilized, studying each population through kinship coefficients (Fij). The assumed

inbreeding coefficient was FIS = 0.19, based on the average of FIS estimates obtained for the

same species from codominant allozyme markers [34]. The number of distance classes (dis-

tance intervals within which all pairs of sampling points are considered) was set to between 5

and 30 per population, in order to include at least 40 pairs of individuals in each distance class.

To establish the relationship between geographic distance classes and genetic similarity, the

regression slope of the kinship coefficients on log-transformed distances (bF) was estimated.

To determine the statistical significance of F1 (the mean kinship coefficient between indi-

viduals belonging to the first distance class) and the bF, the upper and lower bounds of the

95% confidence interval of Fij were used, which were defined after 10,000 permutations of

individuals within locations. The Sp statistic [3] was computed for each population based on

the regression slope of kinship coefficients, as Sp = −bF/(1−F1). The Sp statistic was expected to

summarize the intensity of SGS, allowing for a quantitative comparison among species and/or

populations [3]. All estimations of SGS were performed using the software SPAGeDi v1.5 [35].

An indirect estimation of gene flow from the SGS estimates was performed assuming an

equilibrium of isolation by distance in the fine-scale genetic structure. In such cases, the extent

of gene flow can be expressed in terms of Wright’s neighbourhood size as Nb�4πDEσg2, where

SGS in Acacia aroma
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DE is the effective population density and σg is the mean-squared parent-offspring distance

and can be estimated as the inverse of Sp [3, 36] yielding Nb = (F1−1)/bF. In this study, we esti-

mated Nb and σg using the census density of populations and three predicted effective values

(1/2, 1/4 and 1/10 of the census density).

Results

In this study, a total of 852 AFLP bands in the interval of 50–400 bp were generated with the

four primer pair combinations used. From these bands, 401 with total reproducibility were

selected for all analyses to yield a 0% error rate.

The scan for FST-outliers, conducted with BAYESCAN within the 401 AFLP loci (with a q-

value threshold of 10%), did not detect selection for any locus.

The measurements of genetic diversity are summarized in Table 1. HE varied from 0.18 in

TA to 0.24 in SJ (mean HE = 0.21), and PPL varied from 56.4% in TA to 67.1% in QU (mean

PPL = 62.1%).

When analysing the components of genetic diversity with AFLP-SURV, the highest compo-

nent was within populations (Hw = 0.21), while the between populations component

(Hb = 0.07) was lower. The analysis of population structure by means of Wright’s [23] FST sta-

tistic (0.42) was highly significant (P = 5x10-4). When comparing pairwise Nei´s [19] and geo-

graphical distances matrices with the Mantel test, this result was not significant (P = 0.38).

The analysis of molecular variance indicated that the largest component of genetic diversity

(60.7%) was found within populations and that the remaining (39.3%) was found between

populations (Table 2).

Using the software STRUCTURE, a high peak of ΔK was found at K = 3, based on the AFLP

dataset analysis determining the presence of three clusters. In this analysis, individuals from

MI, RO, SJ and TA were grouped, as they were similar from a genetic perspective.

The remaining two sample sites of A. aroma, LA and QU, constituted two differentiated

clusters. Admixture was observed in all populations but was less prevalent in MI and SJ

(Fig 2).

Table 2. Analysis of molecular variance (AMOVA) based on 401 neutral AFLP loci in six populations of A. aroma. F = fixation index.

Source of variation df SSD MSD Variance (%) ϕ p
Between pop. 5 3683.96 736.79 39.3 0.393 0.001

Within pop. 164 6623.03 40.38 60.7

https://doi.org/10.1371/journal.pone.0192107.t002

Fig 2. Clustering of individuals produced by STRUCTURE for K = 3. Each individual is represented by a vertical coloured line. The same colour for

different individuals indicates that they belong to the same cluster or group. The population codes are the same as those shown in Fig 1.

https://doi.org/10.1371/journal.pone.0192107.g002
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Analysis using Geneland yielded a modal number of populations between 3 and 4, with a

higher proportion of K = 4 (Table 3). The run with the highest average posterior density was

selected. Clusters 1 and 2 included 33 and 10 individuals, respectively, from QU (Fig 3a and

3b). Cluster 3 was constituted by all individuals from LA and the remaining 7 individuals from

QU (Fig 3c); and cluster 4 was composed of individuals from TA, RO, SJ and MI (Fig 3d).

Table 3. Multiple runs for inferring the number of populations with Geneland. Bold indicates the highest average

posterior probability.

Run Modal number Mean of probability density % of modal number

1 4 -50808.20 68.78

2 4 -50200.06 69.33

3 3 -53223.13 64.00

4 4 -51772.92 57.11

5 4 -50558.58 64.67

6 4 -50786.25 52.22

7 4 -50471.06 65.33

8 3 -52789.56 62.67

9 4 -51397.36 53.22

10 4 -51398.89 44.12

https://doi.org/10.1371/journal.pone.0192107.t003

Fig 3. Spatial distribution of each group defined by Geneland at K = 4. (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, and (d) Cluster 4. Clusters are

indicated by areas with different intensities of colour. Lighter-coloured areas indicate a higher probability that individuals belong to that cluster. The

population codes are the same as those shown in Fig 1.

https://doi.org/10.1371/journal.pone.0192107.g003
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Significant SGS was detected in short to medium distances in the LA, RO and QU popula-

tions (up to 530 m) (Fig 4a, 4b and 4c, respectively). However, no significant spatial genetic

structure was detected in MI, SJ and TA (Fig 4d, 4e and 4f, respectively). In distance classes

shorter than 1000 m, a pattern of positive Fij was observed in almost all populations, and for

larger distance classes, negative Fij values were observed.

Populations QU and RO showed the strongest SGS and have a negative log slope (bF)

(Table 4).

Fig 4. Correlograms showing the fine-scale spatial genetic structure (SGS) of the studied populations. (a) Lavalle,

(b) Robles, (c) Quimilı́, (d) Mili, (e) San José, (f) Tapia, (g) Quimilı́ A, and (h) Quimilı́ B. The filled circles indicate

significant Fij values. The dotted lines indicate the 95% confidence intervals (10,000 permutations).

https://doi.org/10.1371/journal.pone.0192107.g004
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The neighbourhood size was calculated for populations where SGS was significant and ran-

ged from 15.2 in QU to 64.3 individuals in LA (Table 4).

The estimation of gene dispersal (σg) was conducted considering four different effective

densities in populations where SGS was significant. The extreme values of gene dispersal,

which corresponded respectively to the highest and lowest density estimates in each popula-

tion, were 273 and 864 m in LA, 45 and 141 m in RO, and 67 and 211 m in QU (Table 4).

Considering its patchy distribution, Quimilı́ (QU) was split into two groups of individuals:

QUA (36 individuals) and QUB (14 individuals) (Fig 1). Significant SGS was detected in both

groups (Table 3, Fig 4g and 4h), but differences were observed between the groups in both

neighbourhood size and Sp estimates. The estimation of gene dispersal (σg) ranged from 86

to 273 m in QUA and 41 to 131 m in QUB, depending on the value used for the estimated

density.

Discussion

Due to the importance of the Acacia aroma species in South America, in this study, we

explored genetic diversity and population structure and characterized fine-scale spatial genetic

structure of this species in Argentina. In this work, we observed high levels of genetic diversity,

showing that populations of this species tend to maintain the majority of variability within

populations, as do other species of Acacia and perennial woody outcrossed species [13, 37, 38,

39]. Additionally, significant SGS was detected in 3 of 6 populations.

Habitat fragmentation is a significant threat to the maintenance of biodiversity in many

ecosystems. In general, the genetic consequences of habitat degradation focus on the reduced

size of populations and increased spatial isolation of remnant populations. However, in some

circumstances, fragmentation appears to increase gene flow among remnant populations,

breaking down local genetic structure [6]. Therefore, it is important to study the genetic struc-

ture of populations when habitat degradation is occurring, in order to design management

plans to maintain the genetic diversity of a species. The genetic diversity observed in A. aroma
seemed to be relatively high when compared with other species sharing the same life history

traits (citar Nybom 2004) and was similar to the values observed in other Acacia species such

as A. curvifructa [37], A. visco [13] and A. senegal [40], which were also studied with dominant

markers. Additionally, in this study, the determination of population structure was assessed

with several approaches. Wright´s FST statistics (0.42) showed a strong signal of genetic struc-

ture among populations. However, the lack of significant correlation between geographic and

genetic distance suggested that the differentiation among populations did not fit the isolation

Table 4. Estimation of the fine-scale genetic structure at 401 AFLP markers in A. aroma populations. F1: multilocus kinship coefficient between individuals from the

first distance class, bF: regression slope of F on natural log distance, Sp: quantification of the SGS, Nb: neighbourhood size, DE: census density determined as trees/hectare

(1 ha = 10,000 m2) and σg: gene dispersal distance (in metres) using four estimates of effective densities (DE, DE/2, DE/4 and DE/10). � P<0.01. The codes for populations

are the same as shown in Table 1.

Sp F1 bF Nb DE σg (DE) σg (DE/2) σg (DE/4) σg (DE/10)
LA 0.02 0.04 -0.01� 64.3 0.69 273.1 386.3 546.3 863.7

MI 0.01 0.01 -0.01 - 22.05 - - - -

RO 0.05 0.05 -0.05� 20.5 8.19 44.6 63.1 89.2 141.1

TA 0.02 0.00 -0.02 - 50.00 - - - -

SJ 0.01 0.00 -0.01 - 12.62 - - - -

QU 0.07 0.15 -0.06� 15.2 2.72 66.7 94.3 133.3 210.8

QUA 0.03 0.06 -0.03� 31.9 3.40 86.4 122.1 172.7 273.1

QUB 0.23 0.14 -0.20� 4.4 2.03 41.4 58.5 82.8 130.9

https://doi.org/10.1371/journal.pone.0192107.t004
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by distance model. This may be explained by assuming that gene flow is limited and that popu-

lations have not reached the migration-drift equilibrium [41]. This approach was consistent

with the AMOVA results. Literature has established that long-lived and outcrossing species

tend to maintain most of their variability within populations [42]. This is the case for A.

aroma, that in this work showed that the majority of its molecular variance occurred within

populations. This result also concurs with previous records for other South American and

African species of Acacia [40, 43, 44, 45,].

The analysis with STRUCTURE showed that the optimal number of clusters (K) was 3.

Conversely, Geneland analysis showed that the optimal number of clusters was K = 4, which

shared a similar grouping to that of STRUCTURE but divided in two one of the clusters identi-

fied by the aforementioned program. In the two cases, populations of SJ, RO, MI and TA con-

stituted a group. This finding could partially be due to the geographical proximity of SJ, RO

and MI. Although TA is geographically farther in distance, there is a route (used by vehicles

and pedestrians) that might promote gene flow (mediated by human activities) between TA

and the first three populations, leading to the increased genetic similarity. The population of

LA constituted a second cluster in STRUCTURE, with low levels of admixture. The individuals

from QU constituted a third cluster, with evidence of admixture with a sizeable contribution

from LA. This situation, with several differences, seems to be reflected in the plot from Gene-

land (Fig 3). In this case, the admixed individuals in QU were clustered with those from LA.

The remaining individuals from QU were split into two clusters by Geneland.

Huang et al. [46] theorized that admixture, reflecting allele sharing, can result from incom-

plete lineage sorting of historically contiguous populations, which might be the case for LA and

QU populations. The heterogeneity in the composition of QU, shown by Geneland, could be

because this population occurs in a highly disturbed area, and the distribution of its individuals

is patchy. Indeed, fragmentation and perturbation are expected to reduce the effective popula-

tion size within patches and increase the genetic differentiation between the populations [6].

Vekemans and Hardy [3] noted that individuals located near each other tend to be more

similar than those located farther apart. Additionally, isolation by distance modelling suggests

that SGS is expected at the equilibrium between drift and dispersal. Therefore, limited gene

dispersal may produce mating among related individuals and fine-scale spatial genetic struc-

ture. In the present study, the individuals who were geographically farther apart were revealed

to have lower genetic similarity. Although the extent of gene dispersal (σg) seems to be larger

than the sampling area within sites, significant SGS was revealed in some populations, suggest-

ing an isolation by distance pattern.

Previous research has demonstrated that SGS is correlated with the mating system, life his-

tory and population density [3]. Thus, the Sp statistic was proposed to synthesize SGS intensity

and remains useful when comparing the strength of SGS in different populations. A. aroma is

an outcrossing species, with its pollen and seed dispersed by animals. However, the mean Sp
statistic estimated here (Sp = 0.057) was greater than the mean values presented by Vekemans

and Hardy [3] for outcrossing species (Sp = 0.0126), species with animal-dispersed seeds

(Sp = 0.0088), and species with pollen dispersed through animals (Sp = 0.0171). Additionally,

this statistic was higher than the values observed for Schinus molle (Sp = 0.021) [47] and Proso-
pis alba (Sp = 0.003) [48] which are both species that share similar life history traits with A.

aroma, since they are outcrosser trees with animals as the vectors responsible for seed and pol-

len dispersal. Spatial genetic structure can be affected by density, among other factors, because

it can influence the rate of genetic drift [3]. In support of this concept, the three populations

with the lowest densities, LA, RO and QU, are those which showed significant SGS. When

splitting QU into two groups, thereby noting its patchy distribution, level of disturbance,

geographical position of individuals and results obtained with Geneland, we observed a
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remarkably higher Sp value in QUB (0.23) than in the QU sample as a whole (0.07) and in

QUA (0.03). The differences observed between the two groups could be partially attributed to

the low level of disturbance in QUB. This group of individuals, although small, is situated in a

more pristine and unmanaged area than those from QUA. Since the six populations studied

here presented different levels of disturbance and ecological characteristics, our work suggests

the need to evaluate the ecological aspects of the life history and landscape for each population.

When comparing the estimates of gene dispersal, we obtained similar values for the four

possible densities considered here as those estimated with AFLP markers in other outcrossers,

animal, pollen and seed dispersed trees, like Chrysophyllum sanguinolentum, Eperua grandi-
flora and Virola michelii [49]. Our results on high gene dispersal are consistent with the basis

that A. aroma is a species pollinated by bees, with seeds dispersed by livestock and large mam-

mals. Additionally, the distance of gene dispersal is usually inversely related to population den-

sity [3], and this occurred in LA, RO and QU, where the density was lower than 9 individuals

per ha. Curtu et al. [50] proposed that low density can act as a barrier to pollen and seed dis-

persal, thereby yielding SGS.

Conclusions

When aiming to design conservation, management, and sustainable use strategies for a species,

it is important to understand the patterns of genetic diversity [42, 51, 52]. In the Chaco Region

of Northwest Argentina, the contributing factors to environmental degradation have been

deforestation, uncontrolled firewood harvesting, livestock overstocking, and in some areas,

tillage of non-arable lands [11]. Analysis of population genetic structures shows that managers

should consider either three or four (depending on analysis) genetically distinct groups when

making management decisions. Our work describes, for the first time, the SGS and gene dis-

persal parameters in A. aroma, which are valuable for the management and conservation of

this and other Acacia species. The current SGS analysis provides information that may be used

during sampling of individuals and seed collection for ex situ conservation and reforestation

programmes. Our findings suggest that for A. aroma reforestation and management pro-

grammes, sampling should consider a minimal distance of 50 to 150 m to minimize genetic

relatedness among sampled seeds in each area. In cases of disturbed populations with low

density such as LA, the minimum and maximum distances should be much greater (270

and 870 m, respectively). In summary, the findings of this study are important for managing

and conserving the extant trees and populations of A. aroma in the fragmented landscapes,

such as Lavalle and Quimilı́, and provide baseline information on the spatial structuring and

dispersal of genes in this species. The combination of molecular markers and robust statistical

approaches constitutes an effective strategy for supporting programmes that mitigate the dete-

rioration and desertification of semi-arid lands in Argentina.
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